Атомная модель резерфорда. Модели строения атомов

Тема этого занятия - «Модели атомов. Опыт Резерфорда». На нём мы узнаем, как происходило изучение учеными сложной структуры атомов, как нашли объяснение этой теории, где полученные знания применяются на сегодняшний день. Также мы рассмотрим, как с помощью опыта Резерфорда можно изучить модель атома.

На предыдущем уроке мы обсудили, что в результате радиоактивности образуются различные виды излучений: a-, b-, и g-лучи. Появился инструмент, при помощи которого можно было изучать строение атома.

После того, как стало ясно, что атом тоже имеет сложную структуру, как-то по-особенному устроен, необходимо было исследовать само строение атома, объяснить, как он устроен, из чего состоит. И вот ученые приступили к этому изучению.

Первые идеи о сложном строении были высказаны Томсоном , который в 1897 году открыл электрон. В 1903 году Томсон впервые предложил модель атома. По теории Томсона, атом представлял собой шар, по всему объему которого «размазан» положительный заряд. А внутри, как плавающие элементы, находились электроны. В целом, по Томсону, атом был электронейтрален, т. е. заряд такого атома был равен 0. Отрицательные заряды электронов компенсировали положительный заряд самого атома. Размер атома составлял приблизительно 10 -10 м. Модель Томсона получила название «пудинг с изюмом»: сам «пудинг» - это положительно заряженное «тело» атома, а «изюм» - это электроны (рис. 1).

Рис. 1. Модель атома Томсона («пудинг с изюмом»)

Первый достоверный опыт по определению строения атома удалось провести Э. Резерфорду . На сегодняшний день мы твердо знаем, что атом представляет собой структуру, напоминающую планетную солнечную систему. В центре находится массивное тело, вокруг которого вращаются планеты. Такая модель атома получила название планетарной модели.

Давайте обратимся к схеме опыта Резерфорда (рис. 2) и обсудим результаты, которые привели к созданию планетарной модели.

Рис. 2. Схема опыта Резерфорда

Внутрь свинцового цилиндра с узким отверстием был заложен радий. При помощи диафрагмы создавался узкий пучок a-частиц, которые, пролетая через отверстие диафрагмы, попадали на экран, покрытый специальным составом, при попадании возникала микро-вспышка. Такое свечение при попадании частиц на экран называется «сцинтиляционная вспышка». Такие вспышки наблюдались на поверхности экрана при помощи микроскопа. В дальнейшем до тех пор, пока в схеме не было золотой пластины, все частицы, которые вылетали из цилиндра, попадали в одну точку. Когда же внутрь экрана на пути летящих a-частиц была поставлена очень тонкая пластинка из золота, стали наблюдаться совершенно непонятные вещи. Как только была поставлена золотая пластина, начались отклонения a-частиц. Были замечены частицы, которые отклонялись от своего первоначального прямолинейного движения и уже попадали в совершенно другие точки этого экрана.

Более того, когда экран сделали почти замкнутым, выяснилось, что есть частицы, которые каким-то образом летят в обратную сторону. Они отклоняются под углом 90° и больше. Эти наблюдения были проанализированы Резерфордом, и выяснилась следующая довольно любопытная вещь.

В первую очередь здесь потерпела крах теория Томсона. По теории Томсона, атом представляет собой шар размером 10 -10 м, в котором положительный заряд размазан и есть электрон. Так вот, электроны - это очень маленькие частицы, они не могут препятствовать a-частицам, летящим с приличной скоростью. Скорость a-частиц в данном случае составляла около 10000 км/с.

Представьте себе ситуацию, когда грузовик столкнется с игрушечным автомобилем. Понятно, что грузовик даже не заметит такого автомобиля. Это мы можем привести как аналогию столкновения электрона с a-частицей. Значит, необходимо было сделать вывод, что атом устроен иначе, не так, как утверждал Томсон. И, видимо, в атоме золота есть объект более массивный, чем a-частица, имеющий положительный заряд.

Давайте посмотрим еще одну картину, которая характеризует рассеивание a-частиц на той массивной частице, наличие которой предсказал Резерфорд в атоме (рис. 3).

Рис. 3. Рассеивание альфа-частиц По результатам опытов можно было говорить, что в атоме есть массивный положительно заряженный объект. a-частица, сталкиваясь с этой большой частицей, может отразиться обратно. Те частицы, которые пролетают рядом, отклоняются на разные углы. Чем дальше a-частица пролетает от этого объекта, тем на меньший угол они отклоняются. Такое явление получило название «рассеивание a-частиц ».

Крупную частицу, которая находится внутри атома, Резерфорд назвал ядром. И даже оценил его размеры. По оценке Резерфорда, размеры ядра составили 10 -14 -10 -15 м. Этот объект был очень и очень мал по своим размерам по сравнению с атомом. Атом имеет размер порядка 10 -10 м. При этом практически вся масса атома была сосредоточена именно в ядре. И именно вокруг ядра обращаются электроны.

Отсюда следует планетарная модель Резерфорда, которая утверждает, что атом представляет собой массивное положительно заряженное ядро, вокруг которого по своим орбитам обращаются электроны (рис. 4). В целом атом электронейтрален, т. е. заряд атома равен нулю. Если у атома избыток или недостаток электронов, то его называют ион.

Рис. 4. Планетарная модель атома

Конечно, были и другие теории, представляющие интерес. На сегодняшний день общепринятой, с некоторыми оговорками, о которых поговорим позднее, является именно планетарная модель атома, предложенная Эрнестом Резерфордом.

Список литературы

  1. Бронштейн М.П. Атомы и электроны. «Библиотечка “Квант”». Вып. 1. - М.: Наука, 1980.
  2. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. - М.: «Просвещение».
  3. Китайгородский А.И. Физика для всех. Фотоны и ядра. Книга 4. - М.: Наука.
  4. Мякишев Г.Я., Синякова А.З. Физика. Оптика Квантовая физика. 11 класс: учебник для углубленного изучения физики. - М.: Дрофа.
  5. Ньютон И. Математические начала натуральной философии. - М.: Наука, 1989.
  6. Резерфорд Э. Избранные научные труды. Радиоактивность. - М.: Наука.
  7. Резерфорд Э. Избранные научные труды. Строение атома и искусственное превращение элементов. - М.: Наука.
  8. Эйнштейн А., Инфельд Л. Эволюция физики. Развитие идей от первоначальных понятий до теории относительности и квантов. - М.: Наука, 1965.

Первая попытка создания модели атома была предпринята Дж. Томпсоном. Он полагал, что атом – это электронейтральная система формы шара с радиусом 10 - 10 м. На рисунке 6 . 1 . 1 . показано, как одинаково распределяется положительный заряд атома, причем отрицательные электроны располагаются внутри него. Чтобы получить объяснение линейчатых спектров атомов, Томпсон тщетно пытался определить расположение электронов в атоме, для расчета частоты их колебаний в положении равновесия. Спустя время Э. Резерфорд доказал, что заданная Томсоном модель была неверна.

Рисунок 6 . 1 . 1 . Модель Дж. Томпсона .

Внутренняя структура атомов была исследована Э. Резарфордом, Э. Марсденом, Х. Гейгером еще в 1909 - 1911 годах. Было применено зондирование атома α -частицами, возникающими во время радиоактивного распада радия и других элементов. Их масса в 7300 раз больше массы электрона, а положительный заряд равняется удвоенному элементарному заряду.

В опытах Резерфорда были использованы α -частицы, имеющие кинетическую энергию 5 М э в.

Определение 1

Альфа-частицы – это ионизированные атомы гелия.

Когда было изучено явление радиоактивности, этими частицами Резерфорд уже «бомбардировал» атомы тяжелых металлов. Входящие в них электроны не могут заменить траектории α -частиц, так как имеют малый вес. Рассеяние может быть вызвано тяжелой положительно заряженной частью атома. На рисунке 6 . 1 . 2 подробно описан опыт Резерфорда.

Рисунок 6 . 1 . 2 . Схема опыта Резерфорда по рассеянию α -частиц. K – свинцовый контейнер с радиоактивным веществом, Э – экран, покрытый сернистым цинком, Ф – золотая фольга, M – микроскоп.

Радиоактивный источник, заключенный в свинцовый контейнер, располагается таким образом, что
α -частицы направляются от него к тонкой металлической фольге. Рассеянные частицы попадают на экран со слоем кристаллов сульфида цинка, светящиеся от их ударов. Сцинтилляции (вспышки) можно наблюдать при помощи микроскопа. Угол φ к первоначальному направлению пучка не имеет ограничений для данного опыта.

После испытаний было выявлено, что α -частицы, проходящие через тонкий слой металла, не испытывали отклонений. Наблюдались их отклонения и на углы, превышающие 30 градусов и близкие к 180 .

Результат Резерфорда противоречил модели Томпсона, так как положительный заряд не был распределен по всему объему атома. Согласно модели Томпсона, заряд не имеет возможности создавать сильное электрическое поле, которое впоследствии отбросит α -частицы. Такое поле однородно заряженного шара максимально на его поверхности и убывает до нуля к центру.

Определение 2

При уменьшении радиуса шара с положительным зарядом атома максимальная сила отталкивания, действующая на α -частицы, по закону Кулона увеличилась бы в n 2 раз.

Если размеры α - частиц достаточно большие, тогда рассеивание может достичь угла в 180 градусов.

Определение 3

Резерфорд пришел к выводу, что пустота атома связана с наличием положительного заряда, сосредоточенного в малом объеме. Данная часть была названа атомным ядром .

Рисунок 6 . 1 . 3 . Рассеяние α -частицы в атоме Томсона (a) и в атоме Резерфорда (b) .

Резерфорд выяснил, что центр атома имеет положительно заряженное ядро с диаметром 10 - 14 - 10 - 15 м. Оно занимает 10 - 12 полного объема атома, но содержит весь положительный заряд и около 99 , 95 % его массы. Вещество, входящее в состав атома, предполагало наличие плотности p ≈ 10 15 г / с м 3 , а заряд ядра равнялся суммарному заряду электронов. Было установлено, что при взятии за 1 значение заряда электрона, заряд ядра равнялся числу из таблицы Менделеева.

Опыты Резерфорда приводили к радикальным выводам и сомнениям ученых. Используя классическое представление о движении микрочастиц, он предлагает планетарную модель атома. Ее смысл заключался в том, что центр атома состоит из положительно заряженного ядра, которое является основной частью массы элементарной частицы. Атом считается нейтральным. При наличии кулоновских сил вокруг ядра по орбиталям вращаются электроны, как показано на рисунке 6 . 1 . 4 . Электроны всегда находятся в состоянии движения.

Рисунок 6 . 1 . 4 . Планетарная модель атома Резерфорда. Показаны круговые орбиты четырех электронов.

Предложенная Резерфордом планетарная модель была толчком в развитии знаний о строении атома. Благодаря ей, опыты по рассеиванию α -частиц смогли объяснить. Но вопрос об его устойчивости остался открытым. Исходя из закона классической электродинамики, заряд, движущийся с ускорением, излучает электромагнитные волны, забирающие и распределяющие энергию. За время 10 - 8 с все электроны потратить всю энергию, вследствие чего упасть на ядро. Так как это не происходит, есть объяснение – внутренние процессы не выполняются согласно классическим законам.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В начале XXв. опытами по облучению тонкой фольги α-частицами Э. Резерфорд определил структуру атома. Он показал, что атом имеет планетарную модель (рис. 3), то есть состоит из плотного положительно заряженного ядра, вокруг которого обращается рыхлая электронная оболочка.

Рис. 3. Планетарная модель строения атома Э. Резерфорда

В целом атом является электронейтральной элементарной структурой химического элемента. Физический смысл порядкового номера Z-элемента в периодической системе элементов был установлен в планетарной модели атома Резерфорда. Z совпадает с числом положительных элементарных зарядов в ядре, закономерно возрастающих на единицу при переходе от предыдущего элемента к последующему. Химические свойства элементов и ряд их физических свойств объясняются поведением внешних, так называемых валентных электронов их атомов.

Поэтому периодичность свойств химических элементов должна быть связана с определенной периодичностью в расположении электронов в атомах различных элементов. Теория периодической системы основывается на следующих положениях:

а) порядковый номер химического элемента равен общему числу электронов в атоме данного элемента;

б) состояние электронов в атоме определяется набором их квантовых чисел п, l , m и m s . Распределение электронов в атоме по энергетическим состояниям должно удовлетворять принципу минимума потенциальной энергии: с возрастанием числа электронов каждый следующий электрон должен занять возможное энергетическое состояние с наименьшей энергией;

в) заполнение электронами энергетических состояний в атоме должно происходить в соответствии с принципом Паули.

Электроны в атоме, занимающие совокупность состояний с одинаковым значением главного квантового числа п , образуют электронную оболочку, или электронный слой. В зависимости от значенийn различают следующие оболочки:К прип = 1,L прип = 2,М приn = 3,N прип = 4,О прип = 5 и т. д. Максимальное число электронов, которые могут находиться в оболочках согласно принципу Паули: вК -оболочке – 2 электрона, в оболочкахL ,М ,N иО соответственно 8, 18, 32 и 50 электронов. В каждой из оболочек электроны распределяются по подгруппам или подоболочкам, каждая из которых соответствует определенному значению орбитального квантового числа. В атомной физике принято обозначать электронное состояние в атоме символомп l , указывающим значение двух квантовых чисел. Электроны, находящиеся в состояниях, характеризуемых одинаковыми квантовыми числамиn иl , называются эквивалентными. ЧислоZ -эквивалентных электронов указывается показателем степени в символеnl z . Если электроны находятся в некоторых состояниях с определенными значениями квантовых чиселп иl , то считается заданной так называемая электронная конфигурация. Например, основное состояние атома кислорода можно выразить следующей символической формулой: 1s 2 , 2s 2 , 2p 4 . Она показывает, что два электрона находятся в состояниях сn = 1 иl = 0, два электрона имеют квантовые числаn = 2 иl = 0 и четыре электрона занимают состоянияc n = 2 иl = 1.

Порядок заполнения электронных состояний в оболочках атомов, а в пределах одной оболочки – в подгруппах (подоболочках) должен соответствовать последовательности расположения энергетических уровней с данными п иl . Сначала заполняются состояния с наименьшей возможной энергией, а затем состояния со все более высокой энергией. Для легких атомов этот порядок соответствует тому, что сначала заполняется оболочка с меньшимп и лишь затем должна заполняться электронами следующая оболочка. В пределах однойоболочки сначала заполняются состояния с l = 0, а затем состояния с большими l , вплоть доl =п – 1. Взаимодействие между электронами приводит к тому, что для достаточно больших главных квантовых чиселn состояния с большимn и малымl могут иметь меньшую энергию, то есть быть энергетически более выгодными, чем состояния с меньшимп , но с большимl . Из изложенного следует, что периодичность химических свойств элементов объясняется повторяемостью электронных конфигураций во внешних электронных подгруппах у атомов родственных элементов.

Лекция: Планетарная модель атома

Строение атома


Наиболее точный способ определения структуры любого вещества - это спектральный анализ. Излучение у каждого атома элемента исключительно индивидуальное. Однако, прежде, чем понять, каким образом происходит спектральный анализ, разберемся, какую структуру имеет атом любого элемента.


Первое предположение о строении атома было представлено Дж. Томсоном. Этот ученый длительное время занимался изучением атомов. Более того, именно ему принадлежит открытие электрона - за что он и получил Нобелевскую премию. Модель, что предложил Томсон, не имела ничего общего с действительностью, однако послужила достаточно сильным стимулом в изучении строения атома Резерфордом. Модель, предложенная Томсоном, называлась "пудингом с изюмом".

Томсон считал, что атом является сплошным шаром, имеющим отрицательный электрический заряд. Для его компенсации в шар вкраплены электроны, как изюминки. В сумме заряд электронов совпадает с зарядом всего ядра, что делает атом нейтральным.

ВО время изучения строения атома выяснили, что все атомы в твердых телах совершают колебательные движения. А, как известно, любая двигающаяся частица излучает волны. Именно поэтому каждый атом имеет свой собственный спектр. Однако данные утверждения никак не вкладывались в модель Томсона.

Опыт Резерфорда


Чтобы подтвердить или опровергнуть модель Томсона, Резерфордом был предложен опыт, в результате которого происходила бомбардировка атома некоторого элемента альфа-частицами. В результате данного эксперимента было важно увидеть, как будет вести себя частица.


Альфа частицы были открыты в результате радиоактивного распада радия. Их потоки представляли собой альфа-лучи, каждая частица которых имела положительный заряд. В результате многочисленных изучений было определено, что альфа-частица походит на атом гелия, в котором отсутствуют электроны. Используя нынешние знания, мы знаем, что альфа частица - это ядро гелия, в то время Резерфорд считал, что это были ионы гелия.


Каждая альфа-частица имела огромную энергию, в результате чего она могла лететь на рассматриваемые атомы с высокой скоростью. Поэтому основным результатом эксперимента являлось определение угла отклонения частицы.


Для проведения опыта Резерфорд использовал тонкую фольгу из золота. На нее он направлял высокоскоростные альфа-частицы. Он предполагал, что в результате данного эксперимента все частицы будут пролетать сквозь фольгу, причем с небольшими отклонениями. Однако, чтобы выяснить это наверняка, он поручил своим ученикам проверить, нет ли больших отклонений у данных частиц.


Результат эксперимента удивил абсолютно всех, ведь очень многие частицы не просто отклонились на достаточно большой угол - некоторые углы отклонения достигали более 90 градусов.


Данные результаты удивили абсолютно всех, Резерфорд говорил, что такое чувство, будто на пути снарядов был поставлен листок бумаги, который не дал альфа-частице проникнуть во внутрь, в результате чего, она повернулась обратно.


Если бы атом действительно был сплошным, то он должен был иметь некоторое электрическое поле, которое затормаживало частицу. Однако, сила поля была недостаточной, чтобы остановить её полностью, а уж тем более отбросить обратно. А это значит, что модель Томсона была опровергнута. Поэтому Резерфорд начал работать над новой моделью.


Модель Резерфорда

Чтобы получить такой результат эксперимента, необходимо сосредоточить положительный заряд в меньшем размере, в результате чего получится большее электрическое поле. По формуле потенциала поля можно определить необходимый размер положительной частицы, которая смогла бы оттолкнуть альфа-частицу в противоположном направлении. Радиус её должен быть порядка максимум 10 -15 м . Именно поэтому Резерфорд предложил планетарную модель атома.


Данная модель названа так неспроста. Дело в том, что внутри атома имеется положительно заряженное ядро, подобное Солнцу в Солнечной системе. Вокруг ядра, как планеты вращаются электроны. Солнечная система устроена таким образом, что планеты притягиваются к Солнцу с помощью гравитационных сил, однако, они не падают на поверхность Солнца в результате имеющейся скорости, которая держит их на своей орбите. То же самое происходит и с электронами - кулоновские силы притягивают электроны к ядру, но за счет вращения они не падают на поверхность ядра.


Одно предположение Томсона оказалось абсолютно верно - суммарный заряд электронов соответствует заряду ядра. Однако в результате сильного взаимодействия электроны могут быть выбиты со своей орбиты, в результате чего заряд не компенсируется и атом превращается в положительно заряженный ион.


Очень важной информации относительно строения атома является то, что практически вся масса атома сосредоточена в ядре. Например, у атома водорода имеется всего один электрон, чья масса более, чем в полторы тысячи раз меньше, чем масса ядра.




Строение атома

Единицы заряда, массы и энергии в атомной физике.

Итак, заряд любой частицы содержит всегда целое число элементарных зарядов. Для частицы атомных размеров это целое число будет к тому же и небольшим. Ввиду этого в атомной физике удобно за единицу электрического заряда принять элементарный заряд е=1,60 10-19 Кл. За единицу массы в атомной физике принимается 1/12 массы атома изотопа углерода 12С. Атомная масса этого изотопа равна 12, а молярная масса М = 12 10-3 кг/моль. Поэтому атомная единица массы (а. е. м.) равна

Атомную единицу массы можно определить также как массу атома элемента с атомной массой 1. Поэтому масса атома (точнее ее средняя величина), выраженная в атомных единицах массы, равна атомной массе элемента.

Отметим, что элемента с атомной массой, равной единице, в природе не существует. Атомная масса водорода близка к единице, но несколько больше ее: она равна 1,008. Итак, масса легчайшего из атомов равна 1,008 а. е. м.

Единица энергии, принятая в атомной физике, есть энергия, приобретаемая частицей с зарядом е (например, электроном) при прохождении разности потенциалов 1 В. Эта единица носит название электронвольт и обозначается эВ. Энергия, приобретаемая зарядом при движений в электрическом поле, равна произведению заряда на разность потенциалов начальной и конечной точек пути, поэтому
1 эВ=1,6 10-19 Кл 1В=1,6 10-19Дж.
Из определения электронвольта следует, что электрон, ускоренный разностью потенциалов U [В], имеет энергию, численно равную U [эВ]. Ион с зарядом 2е, пройдя ту же разность потенциалов, приобретает энергию 2U [эВ], и т. д.

В электронвольтах можно измерять энергию не только заряженных, но и нейтральных частиц. Для примера выразим в электронвольтах энергию атома кислорода (m=16 а. е. м.), движущегося со скоростью v=103 м/c:

Используются также кратные электронвольту единицы:
1 кэВ=103 эВ, 1МэВ=106 эВ, 1 ГэВ=109 эВ, 1 ТэВ=1012 эВ.

Модель атома Резерфорда-Бора.

Все вещество состоит из элементарных частиц. Но вещество не состоит из элементарных частиц непосредственно. Кирпичиками или элементами, из которых построено все вещество являются атомы. До 1912 г. ученые представляли атом в виде положительно заряженного шара, внутри которого находятся отрицательно заряженные электроны. Конструкция похожая на кекс с изюминками-электронами была предложена однофамильцами Томсонами – Джозефом Джоном и Уильямом лордом Кельвином.

В целом положительные и отрицательные заряды в таком атоме скомпенсированы и атом электрически нейтрален. Предполагалось, что вся масса атома сконцентрирована в электронах. Поскольку электрон намного легче атома, то даже самые простые атомы должны содержать тысячи электронов.

В 1909 г. Резерфорд поручил молодому тогда еще физику Марсдену исследовать рассеяние альфа лучей при прохождении их через тонкие металлические пластинки. Большинство элементарных частиц испытывали незначительные отклонения после прохождения через пластинки. Однако Марсдену удалось обнаружить и очень сильно отклонившиеся частицы. Их, правда, было очень мало, но удивительно было то, что они вообще были. Конечно, Марсдену могло это показаться. Для регистрации альфа частиц использовался спинтарископ – небольшой прозрачный экран, покрытый специальным флуоресцирующим веществом. Когда элементарная частица попадает в такой экран, возникает слабая вспашка. Вспышка очень маленькая и слабая. Ее наблюдают под микроскопом. Чтобы глаз мог ее заметить, человек должен привыкнуть к темноте. Для этого он, прежде чем начать работать, то есть регистрировать и считать вспышки, должен полчаса посидеть в полной темноте. Вполне естественно поэтому предположить, что Марсден мог ошибиться.

Резерфорд просит Марсдена повторить опыты, но на этот раз специально следить за частицами, получившими большое отклонение вплоть до 90°.

Когда через несколько дней Марсден вошел в кабинет Резерфорда и сказал "есть такие частицы", Резерфорд от удивления выронил трубку. Резерфорд, хотя и предложил Марсдену провести эти опыты, сам не ожидал такого результата.

Резерфорд потом вспоминал: "это было самым невероятным событием моей жизни. Это было почти столь же невероятно, как если бы выстрелили 15-дюймовым снарядом в кусок тонкой бумаги, а снаряд возвратился к вам и нанес вам удар ".

Опыты снова были перепроверены, но на этот раз к экспериментам подключился Гейгер. Явление было экспериментально изучено и материалы экспериментов опубликованы в том же году. Однако смысл результатов был загадочным. Не мог атом Томсона задержать, летящую с большой скоростью альфа-частицу.

В 1911 г. Резерфорд публикует свою статью "Рассеивание альфа- и бета-частиц веществом и структура атома", в которой предлагает свою знаменитую планетарную модель атома.

Маленькое очень массивное положительно заряженное ядро, от которого как раз и отскакивали альфа-частица в описанных опытах, расположено в центре атома Резерфорда. Вокруг ядра вращаются легкие отрицательно заряженные электроны. Большую часть пространства внутри атома заполняет пустота. В целом модель очень похожа на нашу Солнечную систему.

К великому сожалению Резерфорда, статья была встречена молчанием. Резерфорд, конечно понимал почему. Его атом был недолговечен. Электрон, вращаясь вокруг ядра, должен излучать электромагнитные волны и терять вследствие этого энергию. При этом скорость его должна была бы замедлиться, и он должен был бы упасть на ядро. Однако опыт свидетельствует, что практически все атомы в природе устойчивы.

Выправил ситуацию Нильс Бор.

Теория Бора

Постулаты Бора по своему характеру аналогичны законам Кеплера, которых тоже три. И те и другие являются угаданными закономерностями, полученными на основе экспериментальных фактов. Кеплеру было пожалуй даже труднее. Как, например, можно прийти к результату, что (формула)? Только после того, как Ньютон сформулировал законы механики, законы Кеплера стало возможно объяснить.

Основным недостатком модели Резерфорда было то, что электрон, движущийся по круговой орбите вокруг ядра, должен излучать электромагнитные волны, но факты говорят о том, что он не излучает. Ученые, в том числе и Резерфорд, не могли объяснить этого противоречия. Не мог этого сделать и Бор. Он просто встал на сторону фактов: раз электроны не излучают, значит так и должно быть. Так появился первый постулат. Всего как мы уже сказали их три.

Постулаты Бора

1. Электроны движутся в атоме по стационарным орбитам, при этом они не излучают и не поглощают энергии.

2. Стационарными орбитами будут те, для которых момент количества движения электрона mvr равна целому кратному .

, где k = 1, 2, 3, 4...

3. При переходе с одной орбиты на другую электрон излучает или поглощает энергию в виде фотона.

Находясь на более далеких орбитах, электрон обладает большей энергией, поэтому, переходя на орбиту ближе к ядру, он излучает один фотон с энергией

Когда же атом поглощает фотон, электрон может подняться на более высокий уровень.

Размеры атома водорода

Электрон, вращаясь вокруг ядра, испытывает к нему силу кулоновского притяжения:

где – заряд атомного ядра с порядковым номером Z.

Эта сила в соответствии со вторым законом Ньютона должна равняться , следовательно: или .

Второй постулат Бора говорит нам о том, что радиус орбиты не может быть произвольным, а должен подчиняться уравнению:

где мы будем обозначать k-ую стационарную орбиту. Отсюда получаем

.

Мы получили радиус k-ой стационарной орбиты атома с порядковым номером Z. Для водорода Z=1. Найдем радиус первой (k = 1) самой внутренней орбиты, на которой электрон обладает минимальным запасом энергии.

Следовательно, диаметра атома водорода равен примерно , что хорошо согласуется с экспериментальными данными.

Найдем энергию электрона на k-ой орбите.

Его энергия складывается из кинетической энергии движения по орбите и потенциальной электростатической энергии взаимодействия с ядром.