Химический потенциал компонента идеальных растворов. Химический потенциал Химический потенциал компонента реальных растворов

Изменение состава системы не может не сказываться на характере протекания процесса, например, на положении химического равновесия. Возникает вопрос учета влияния переменного состава на основные показатели реакции, основным из которых является энергия Гиббса.

Т.к. G – экстенсивная величина, то ее частная производная по числу моль является парциальной молярной величиной:

.

Парциальная молярная энергия Гиббса получила название «химический потенциал».

Химический потенциал компонента равен изменению энергии Гиббса при добавлении 1 моль этого компонента к большому объему системы в изобарно-изотермическом процессе, при условии, что состав системы остается постоянным:

Протекание процесса зависит от величины химического потенциала.

Чтобы процесс шел в нужном направлении должно соблюдаться условие уменьшения химического потенциала:

Что равносильно или

Условие равновесия: .

По свойству ПМВ (I уравнение Гибба-Дюгема):

и можно вычислить изменение энергии Гиббса при любом составе.

Согласно закону Гесса:

Химический потенциал идеального газа равен его энергии Гиббса или в дифференциальной форме при T = const и количестве вещества газа один моль

Откуда ,

где μ * – постоянная интегрирования.

Для определения μ * используют представление о т.н. стандартном состоянии (P = 1 атм., Т = 298 K), с учетом которого

,

где – стандартный химический потенциал, – относительное давление; – отношение текущего парциального давления идеального газа к его давлению в стандартных условиях. Относительное давление – величина безразмерная, но численно относительное давление равно парциальному давлению газа, выраженному в атмосферах.

Изменение химического потенциала

Если будет смесь идеальных газов, то для компонента смеси:

и

В ситуации реального газа необходимо учитывать взаимодействие молекул газа друг с другом, которое учитывают, используя понятие фугитивности в уравнении химического потенциала идеального газа:

Для однокомпонентной системы



для смеси неидеальных газов

В обоих уравнениях – стандартный химический потенциал. За стандартное состояние газа принимают гипотетический газ при 298 K и 1 атм. со свойствами идеального газа ( =1, а f 0 = Р 0); – относительная фугитивность газа. Аналогично относительному парциальному давлению, , где f 0 – стандартная фугитивность – фугитивность газа в стандартном состоянии, относительная фугитивность численно равна фугитивности, выраженной в атмосферах.

Изменение химического потенциала неидеального газа:

Для однокомпонентной системы

Для смеси неидеальных газов.

Химический потенциал компонента идеального раствора описывается дифференциальным уравнением

где х i – мольная доля компонента в растворе.

После решения дифференциального уравнения получается интегральная форма:

,

где – химический потенциал чистого компонента раствора; = f (T , природы вещества)

Допустим, что равновесная газовая смесь содержит i индивидуальных веществ.

Из определения энергии Гиббса (III, 17) следует:

G = U + PV – TS

Рассмотрим в этом выражении каждое слагаемое.

Согласно уравнению (I, 25а) зависимость внутренней энергии 1 моль индивидуального i -ого вещества от температуры представляется следующим образом:

где - молярная теплоёмкость при постоянном объёме i -ого газа. Так как для идеального газа теплоёмкость не зависит от температуры, интегрируя при этом условии уравнение () от нуля до Т , получим:

Или (III, 38)

где - внутренняя энергия 1 моль i -ого вещества при 0 К . Если в смеси этого вещества содержится моль, то умножая обе части уравнения (III, 38) на и суммируя по всем индивидуальным веществам системы, будем иметь:

Второе слагаемое в выражении для энергии Гиббса, исходя из уравнения Менделеева – Клапейрона, запишем в виде:

Рассмотрим третье слагаемое. Из уравнения (II, 21) для 1 моль идеального газа следует:

Положим 1 атм и , тогда

Или (III, 41),

где - стандартная (так как относится к = 1 атм .) энтропия 1 моль идеального газа при 1 К , которая также называется энтропийной постоянной идеального газа. Индекс «2 » теперь можно отбросить и выражение запишется в виде:

где - относительное давление. Стоящие под знаком логарифма величины и - безразмерные. Следует отметить, что величины и могут быть выражены в любых, но обязательно одних и тех же единицах – атмосферах, паскалях, миллиметрах ртутного столба и т.д. Однако, выражение давления в атмосферах имеет очевидное преимущество, т.к. в этом случае давление и относительное давление численно совпадают .

Таким образом, для 1 моля i -ого компонента газовой смеси мы можем записать:

где - относительное парциальное давление i -ого компонента.

Умножая обе части выражения (III, 42) на и суммируя по всем индивидуальным веществам в системе, получим:

Подставив значения U , PV и S из уравнений (III, 39), (III, 40) и (III, 43) в выражение для энергии Гиббса, находим следующее выражение:

Первые пять слагаемых в этом уравнении зависят от природы индивидуального i -ого вещества и температуры, но не зависят от состава смеси и давления. Алгебраическую сумму этих пяти слагаемых, стоящих в скобках, обозначим через . Тогда

или, если ввести обозначение

то выражение (III, 45) можно окончательно представить в таком виде:

Величина называется химическим потенциалом индивидуального i -ого вещества, а величина - стандартным химическим потенциалом (при =1).

Так как для идеальной газовой смеси и , то уравнение

(III, 46) можно привести к виду:

Если есть функция только температуры, то зависит не только от температуры, но и давления.

Подставив значения из уравнений (III, 46) и (III, 48) в (III, 47), то соответственно получим:

Чтобы прояснить смысл понятия «химический потенциал», продифференцируем выражение (III, 49) как произведение при постоянных Р и Т :

Легко показать, что при постоянных Р и Т второе слагаемое (зависит только от температуры).

Тогда для системы переменного состава

Примем постоянным число молей всех компонентов смеси, кроме i -ого компонента, тогда

Из определения химического потенциала как частной производной вытекает следующее. Если при постоянных температуре Т и давлении Р к бесконечно большому количеству смеси (раствора) определенного состава добавить один моль какого-нибудь компонента, то химический потенциал будет равен приросту энергии Гиббса.

Сказанное выше позволяет определить химический потенциал как энергию Гиббса, приходящуюся на один моль компонента в смеси или, иными словами, парциальную молярную энергию Гиббса.

Полный дифференциал энергии Гиббса в соответствии с (III, 26) и (III, 53) запишется следующим образом:

Исходя из этого выражения, можно показать, что для систем с переменным составом фундаментальные термодинамические уравнения будут иметь следующий вид:

Из уравнений (III, 55) – (III, 58) вытекает:

Таким образом, химический потенциал является частной производной по количеству i -ого компонента от любой характеристической функции G,F,U и H при постоянном количестве остальных индивидуальных веществ в системе и постоянстве соответствующих независимых переменных.

Необходимо отметить, что химический потенциал является интенсивным свойством системы.

Химический потенциал для одного моля чистого вещества в состоянии идеального газа при любых температуре Т и давлении Р можно рассчитать по уравнению:

Вообще химический потенциал чистого вещества – это его мольная энергия Гиббса: , где - энергия Гиббса 1 моля чистого вещества.

Для практических целей широко используют мольную энергию Гиббса в стандартном состоянии (при и Т = 298К ).

В этом случае

Величину, которую мы обозначили , также определяют как стандартную молярную энергию Гиббса образования одного моля вещества из простых веществ, находящихся в их стандартных состояниях.

При этом полагают, что энергия Гиббса образования () всех элементов при всех температурах равна нулю.

Стандартные энергии Гиббса образования многих соединений табулированы. По взятым из таблиц значениям может быть рассчитано изменение энергии Гиббса химической реакции аналогично тому, как рассчитывается тепловой эффект химической реакции по значениям стандартных теплот образования веществ, участвующих в химической реакции.


Энергетические превращения, происходящие в системах при совершении процессов в различных условиях, описываются с использованием соответствующих термодинамических функций U , H , G , A . Необходимо отметить, что эти функции вводились для идеального процесса, в котором количество каждого вещества считалось неизменным и равным одному молю. Однако их величины должны зависеть от количества данного вещества в системе, которое может изменяться в ходе процесса. Например, в замкнутой системе при протекании химической реакции уменьшается количество исходных веществ и увеличивается количество продуктов при сохранении общей массы вещества (меняется качественный и количественный состав системы). Для учета влияния этого обстоятельства на величины термодинамических функций было введено понятие химического потенциала.

Приращение внутренней энергии системы при увеличении количества данного вещества в условиях постоянства энтропии системы и ее объема, при постоянстве количеств остальных веществ, получило название химический потенциал i-го вещества :

Можно показать, что величина химического потенциала i -го вещества определяется изменением термодинамической функции при изменении количества данного вещества на один моль в процессах, протекающих при постоянстве соответствующих параметров и неизменном количестве остальных веществ:

.

В изобарно-изотермических процессах изменение энергии Гиббса при изменении количества i -го вещества будет определяться выражением dG =m i ×dn i . При протекании химической реакции изменяются количества всех веществ, участвующих в реакции, поэтому dG =Sm i ×dn i .

Условием равновесия химической реакции, происходящей в изобарно-изотермических условиях, D r G =0, следовательно, Sm i ×dn i = 0. Для реакции n а A + n b B = n с C + n d D условием равновесия будет Sm i × n i = 0,

(m c × n C + m d × n D )–(m a × n A + m b × n B )=0.

Очевидно, что химический потенциал i -го вещества будет зависеть от его количества в единице объема – от концентрации вещества. Эту зависимость можно получить, рассмотрев изменение энергии Гиббса при изобарно-изотермическом смешивании двух идеальных газов.

Пусть два идеальных газа, находящихся в стандартных условиях, разделены перегородкой и занимают объемы V 1 и V 2 соответственно (рис.1.5). Количество первого газа равно одному молю (n 1 =1), а второго n 2 . Если убрать перегородку, происходит смешивание газов в результате взаимной диффузии. Каждый газ займет весь объем системы, и объем каждого составит V 1 + V 2 . При этом концентрация каждого газа (количество вещества в единице объема) уменьшится. Каждый газ совершит работу расширения при постоянном давлении и температуре. Очевидно, что в результате этого процесса энергия Гиббса системы уменьшится на величину совершенной работы расширения.


Рис. 1.5. Смешивание двух идеальных газов в изобарно-изотермических условиях

в результате взаимной диффузии

Изменение энергии Гиббса в результате уменьшения концентрации первого газа будет равно его работе расширения. Работа расширения первого газа определяется следующим образом:

dA = p 0 ×dV ,учитывая, что p ×V =n×R ×T и n 1 =1,

® A =–R ×T ×ln .

Поскольку равные объемы идеальных газов содержат одинаковое число молей вещества,

,

где X 1 – мольная доля 1-го газа; p 1 – парциальное давление 1-го газа; р 0 = 1,013×10 5 Па – стандартное давление; С 1 – молярная концентрация 1-го газа; С 0 =1 моль/л стандартная концентрация.

Таким образом, энергия Гиббса 1-го газа изменится на величину DG 1 =R ×T ×lnX 1 . Поскольку n 1 =1 моль, то, очевидно, D f G i T =D f G 0 i T + R ×T ×lnX i .

Таким образом, химический потенциал вещества зависит от его концентрации в смеси:

m i =m i 0 + R ×T ×lnX i , m i =m i 0 + R ×T ×ln , m i =m i 0 + R ×T ×ln .

Необходимо отметить, что данные концентрационные зависимости химического потенциала характеризуют идеальные газы и растворы . Межмолекулярные взаимодействия в реальных газах и растворах приводят к отклонению расчетных химических потенциалов от величин, полученных для идеальных систем. Для учета этого вводятся понятия фугитивности иактивности.

Фугитивность f (летучесть) – термодинамическая величина, служащая для описания свойств реальных газовых смесей. Она позволяет применять уравнения, выражающие зависимость химического потенциала идеального газа от температуры, давления и состава системы. При этом парциальное давление компонента газовой смеси p i заменяется на его фугитивность f i . Межмолекулярное взаимодействие приводит к уменьшению значения эффективного парциального давления компонента газовой смеси. Для учета этого величина парциального давления умножается на коэффициент фугитивности (g i <1).Очевидно, что при p i ®0 g i ®1 и f i ® p i .

В отличие от идеальных, в реальных растворах имеются межмолекулярные взаимодействия и взаимодействия между ионами, образующимися в результате электролитической диссоциации. Это приводит к тому, что эффективная концентрация молекул и ионов в реальных растворах уменьшается. Поэтому при вычислении химического потенциала используют вместо концентрации С величину активности а . Активность и молярная концентрация i -го компонента связаны соотношением а i =g i ×С i , где g i – молярный коэффициент активности (g i <1). Очевидно, что при С i ®0 g i ®1 и а i ® С i .

Химический потенциал

G и энергия Гельмгольца F ) зависит от внешних условий:

Т , р , или V

k компонентов. Пусть n 1 , n 2 , …, n k – число моль 1-го, 2-го, …, k

G = f(p, T, n 1 , n 2 , …, n k)

(2.1)

Введем обозначение:

………………….

,

где μ 1 , μ 2 , …, μ k k

В общем виде

F = f(V, T, n 1 , n 2 , …, n k)

.

Таким образом, химический потенциал i р , Т = const ):

.

При р, Т = const уравнение (2.1) имеет вид:

. (2.2)

n i

Для индивидуального вещества

,

р к стандартному давлению р 0 = 1 атм.

Поскольку μ = , можно записать

Правило фаз Гиббса

Пусть при р, Т = const в состоянии равновесия существует система, состоящая из k компонентов и m фаз. На систему оказывают влияние s внешних параметров (на практике обычно s = 2 – это р и Т ). Поставим задачу рассчитать число термодинамических степеней свободы данной системы.

Число термодинамических степеней свободы – это число независимых параметров состояния данной системы, оно равно общему числу параметров состояния системы за вычетом числа уравнений, связывающих эти параметры.

Для определения состава любой фазы, содержащей k компонентов достаточно указать содержание (k – 1) компонентов. Так как концентрации компонентов обычно выражены в массовых или мольных долях и концентрация одного из компонентов будет определена, если известны концентрации остальных компонентов.

Например, двухкомпонентная система представляет собой 20 %-й водный раствор уксусной кислоты. Тогда массовую долю второго компонента – воды можно рассчитать: 100 – 20 = 80 %. Поэтому указывать, сколько в системе содержится воды необязательно.

Если в системе m фаз, то для описания их состава требуется m(k–1) переменных. Кроме того, на систему влияют внешние параметры, количество которых равно s . Следовательно, общее количество переменных,влияющих на состояние системы равно:

m(k – 1) + s .

Однако не все эти переменные независимы друг от друга, та как при равновесии распределение каждого из компонентов между различными фазами должно удовлетворять теореме равновесия Гиббса:

Очевидно, что таких уравнений для каждого из компонентов будет на единицу меньше числа фаз. Например, если m = 3, то для первого компонента запишется только два уравнения:

тогда число уравнений, связывающих химические потенциалы одного компонента равно m – 1 , а всех k компонентов – k(m – 1) .

Для определения числа термодинамических степеней свободы вычтем из общего числа параметров, описывающих состояние данной системы число уравнений, связывающих их:

После преобразований получим:

Уравнение (2.5) выражает основной закон фазового равновесия – правило фаз Гиббса. Если на систему влияют два внешних параметра (р и Т ), то правило фаз Гиббса записывается

.


Из двух и более компонентов

С чистым растворителем

Рассмотрим разбавленный раствор нелетучего вещества. Для такого раствора коэффициент активности i -го компонента γ i → 1 и a i x i . Зависимость давления пара i -го компонента над раствором от его мольной доли выражается уравнением Рауля:

Пусть 1 – летучий растворитель, а 2 – нелетучее растворенное вещество. Общее давление пара над раствором равно

Давление пара над чистым нелетучим веществом р 2 ≈ 0, следовательно им можно пренебречь, тогда

Так как мольная доля x < 1, то давление пара над раствором нелетучего вещества ниже по сравнению с давлением пара над чистым растворителем при той же температуре (рис. 2.5).

Выразим мольную долю растворителя х 1 через мольную долю растворенного вещества х 2 :

тогда получим

Преобразуем

Уравнение (2.9) выражает закон Рауля для растворов нелетучих веществ: относительное понижение давления пара растворителя над раствором нелетучего

вещества по сравнению с давлением пара чистого растворителя при той же температуре равно мольной доле растворенного вещества.

На рисунке:

1 – кривая зависимости давления насыщенного пара над чистым твердым растворителем (кривая возгонки)

2 – кривая зависимости давления насыщенного пара над чистым жидким растворителем (кривая испарения);

3 – кривая зависимости давления насыщенного пара над раствором нелетучего вещества с мольной долей х 2 ;

р 1 0 – давление насыщенного пара над чистым растворителем при температуре Т 1 ;

р 1 – давление насыщенного пара над раствором при температуре Т 1 .

Из рисунка видно, что р 1 < р 1 0 .

Химический потенциал

Свободная энергия системы (энергия Гиббса G и энергия Гельмгольца F ) зависит от внешних условий:

Эта зависимость является полной для простейших систем, состоящих из одного компонента.

Термодинамическая система может состоять как из одного, так и из нескольких компонентов. Очевидно, что величина свободной энергии многокомпонентной системы будет зависеть как от внешних условий (Т , р , или V ), так и от природы и количества веществ, составляющих систему, т. е. свободная энергия, как и любая термодинамическая функция, является экстенсивным свойством системы.В случае, если состав системы изменяется во времени (т.е. в системе протекает химическая реакция), необходимо учесть влияние изменения состава на величину свободной энергии системы.

Рассмотрим термодинамическую систему, состоящую из k компонентов. Пусть n 1 , n 2 , …, n k – число моль 1-го, 2-го, …, k -го компонентов. Тогда свободная энергия Гиббса является функцией следующих переменных:

G = f(p, T, n 1 , n 2 , …, n k)

Продифференцируем по всем переменным:

(2.1)

Введем обозначение:

………………….

,

где μ 1 , μ 2 , …, μ k – химические потенциалы 1-го, 2-го, …, k -го компонентов соответственно.

В общем виде

Аналогичное выражение получаем для свободной энергии Гельмгольца:

F = f(V, T, n 1 , n 2 , …, n k)

.

Таким образом, химический потенциал – это частная производная от свободной энергии по количеству моль i -го компонента при постоянстве соответствующих внешних параметрах и числе моль всех остальных компонентов. Таким образом, химический потенциал является парциальной мольной энергией Гиббса (при р , Т = const ):

.

Свободная энергия – это общее свойство системы, химический потенциал характеризует свойства отдельного компонента, входящего в систему. Химический потенциал является интенсивным свойством системы, т.к. не зависит от массы системы.

При р, Т = const уравнение (2.1) имеет вид:

. (2.2)

В этом случае изменение энергии Гиббса, то есть полезная работа системы, обусловлена только изменением состава системы в результате протекания химической реакции или вследствие обмена веществом между системой и окружающей средой.

Уравнение (2.2) выражает взаимосвязь между общим свойством системы и свойствами каждого ее компонента. Приняв, что химический потенциал является постоянной величиной, проинтегрируем уравнение (2.2):

Константа интегрирования равна нулю, поскольку, если все n i = 0, энергия Гиббса также равна нулю.

Для индивидуального вещества

,

т.е. химический потенциал индивидуального вещества равен мольной энергии Гиббса.

Из уравнения (2.3) видно, что под знаком логарифма стоит безразмерная величина, равная отношению давления р к стандартному давлению р 0 = 1 атм.

Поскольку μ = , можно записать

где – стандартная мольная энергия Гиббса.

Химический потенциал.

Важно заметить, что для системы, состоящей из одного вещества, справедливо:

Любая экстенсивная функция состояния является функцией количества вещества в системе.

По этой причине, в случае если система состоит из нескольких компонентов, то

где n i – число молей i -го компонента. Продифференцируем (62) по n i

p, Т, n j≠i =const

Величину Гиббс назвал химическим потенциалом и обозначил μ i Его ещё называют парциальной мольной энергией Гиббса (парциальная термодинамическая функция Гиббса)

Можно дать следующее определœение химического потенциала:

Этоизменение энергии Гиббса однородной многокомпонентной системы при добавлении к ней 1 моля данного компонента при постоянных давлении, температуре и составе системы (ᴛ.ᴇ. добавление должно происходить при бесконечно больших количествах всœех компонентов, чтобы состав системы не изменился).

Химический потенциал в отличие от, к примеру, энергии Гиббса G, – интенсивная величина, ᴛ.ᴇ. он не зависит от массы системы, а зависит от природы системы и ее состава, температуры и давления. Вообще говоря, m i зависит от силы химического взаимодействия данного компонента с другими компонентами: чем это взаимодействие сильнее, тем меньше m i . Сила взаимодействия зависит от концентрации компонента͵ причем, чем меньше концентрация i-ого компонента͵ тем взаимодействие сильнее, и тем меньше m i . Вещество стремится переходить из состояния, где его m больше, в состояние, где его m меньше (ᴛ.ᴇ. туда, где сильнее взаимодействие данного компонента с другими компонентами).

Любая энергетическая характеристика есть произведение интенсивного фактора на экстенсивный. В нашем случае μ i – интенсивный параметр, а n i – экстенсивный. Тогда:

При T, p = const. (64)

Введение некоторого количества dn i молей i–го компонента при постоянном количестве других компонентов и постоянных Т и р будет увеличивать значение энергии Гиббса на величину . Аналогичные изменения будут вызваны прибавлением других компонентов. Общее изменение энергии Гиббса системы при добалении в нее нескольких компонентов равно:

или, в общем случае,

Это уравнение получило название фундаментального уравнения Гиббса .

Проинтегрируем соотношение (64) при постоянном составе системы (ᴛ.ᴇ. когда m i = const):

Соотношение (67) иногда принято называть уравнением Гиббса-Дюгема (чаще данное уравнение записывают таким образом:

Где x i - молярная доля i-ого компонента.)

При р, Т = const для химической реакции верно:

Расчёт химического потенциала идеального газа:

В случае если у нас есть один чистый компонент, то его химический потенциал m равен молярной энергии Гиббса :

(Здесь и – молярный объём и молярная энтропия вещества), тогда получим:

Пусть идеальный газ находится при Т = const, тогда

Проинтегрируем выражение (71) от р 0 = 1 атм до любого р и, соответственно, от m 0 до m; получим:

Но для идеального газа выполняется закон Менделœеева–Клапейрона, который для 1 моль газа имеет вид:

р= RT, отсюда = . (73)

Тогда получим:

В случае если р 0 = 1 а тм, то

В уравнении (75) р – не само давление, а безразмерная величина, численно равная давлению, выраженному в атмосферах ().

m 0 – стандартный химический потенциал , ᴛ.ᴇ. химический потенциал при стандартном давлении р 0 = 1 атм;

В случае если же имеется смесь газов, то для любого i-ого компонента смеси.

m i = m 0 i + RT ln (76)

Здесь – безразмерная величина, численно равная парциальному давлению i-ого компонента смеси (ᴛ.ᴇ. той части от общего давления, которая приходится на i-ый компонент), выраженному в атмосферах ().

Так как , где – мольная доля i–го газа в смеси, p – общее давление в системе, то

Химический потенциал. - понятие и виды. Классификация и особенности категории "Химический потенциал." 2017, 2018.

  • - Химический потенциал

    Термодинамика фазовых переходов. Определения Рассмотрим термодинамику систем, в которых могут иметь место фазовые переходы. Термодинамическая система, которая может обмениваться веществом с окружающей средой, называется открытой. - Термодинамическая... .


  • - Химический потенциал- это энергия Гиббса, приходящаяся на 1 моль вещества в данной системе

    ; Химический потенциал не дается в справочных таблицах. Он служит для доказательств. Химический потенциал вещества в растворе зависит от концентрации: m(Х) = m°(Х) + RTlnc(X) Это уравнение эвристическое, предложенное логическим путем для идеальных растворов. С ним... .


  • - Химический потенциал компонента идеальных растворов.

    Если общее давление газовой смеси невелико, то каждый газ будет оказывать свое собственное давление, причем такое, как если бы он один занимал весь объем. Это давление называется парциальным. Полное наблюдаемое давление р равно сумме парциальных давлений каждого газа... .


  • - Химический потенциал индивидуального идеального газа.

    Рассмотрим термодинамическую систему, представляющую собой идеальный газ. Химический потенциал идеального газа равен: , где – мольная энергия Гиббса (изобарный потенциал 1 моль идеального газа). Так как, то, где – мольный объем идеального газа (объем 1 моль газа). ... .

    Энтальпия, термодинамическая функция Гиббса, Если при передачи некоторого количества теплоты газу, он расширяется изобарно, то первое начало термодинамики для элементарного процесса в этом случае можно записать в виде: . Величина, стоящая под знаком... .


  • - Т.е. химический потенциал i-го компонента системы равен производной энергии Гиббса системы по массе i-го компонента при постоянных Р. Т, V, n и массах остальных компонентов.

    Частные производные от экстенсивных свойств по n при постоянных Р. Т, V, n называются парциальными величинами. В зависимости от единиц, в которых выражается масса компонента, различают мольные и удельные парциальные величины. Таким образом, &... .


  • - Электрохимические системы. Электрод. Электрохимический потенциал. Абсолютные электродные потенциалы и электродвижущая сила.

    Электродные процессы. Понятие о скачках потенциалов и электродвижущей силе (ЭДС). Электрохимические цепи, гальванические элементы. Стандартный водородный электрод, стандартный электродный потенциал. Классификация электрохимических цепей и электродов. ЛЕКЦИЯ... .