Криволинейный интеграл не зависящий от пути интегрирования. Независимость криволинейного интеграла от пути интегрирования потенциальное поле вычисление криволинейного интеграла в потенциальном поле вычисление потенциала в декартовых координатах

Область называется односвязной, если ее граница представляет собой связное множество. Область называется n-связной, если ее граница распадается на n- связных множеств.

Замечание. Формула Грина верна и для многосвязных областей.

Для того, чтобы интеграл (A, B – любые точки из D) не зависел от пути интегрирования (а только от начальной и конечной точек A, B) необходимо и достаточно, чтобы по любой замкнутой кривой (по любому контуру) лежащей в D интеграл был равен нулю =0

Доказательство (необходимость). Пусть (4) не зависит от пути интегрирования. Рассмотрим произвольный контур C, лежащий в области D и выберем две произвольные точки A, B на этом контуре. Тогда кривую C можно представить, как объединение двух кривых AB=G2 , AB=G1 , C=Г - 1 + G2 .

Теорема 1. Для того, чтобы криволинейный интеграл не зависел от пути интегрирования в D, необходимо и достаточно чтобы

в области D. Достаточность. Если выполнено, то формуле Грина для любого контура C будет откуда по лемме следует требуемое утверждение. Необходимость. По лемме для любого контура= 0. Тогда по формуле Грина для области D , ограниченной этим контуром=0. По теореме о среднем=mDили==0. Переходя к пределу, стягивая контур к точке, получим, что в этой точке.

Теорема 2. Для того, чтобы криволинейный интеграл (4) не зависел от пути интегрирования в D, необходимо и достаточно чтобы подинтегральное выражение Pdx+Qdy являлось полным дифференциалом некоторой функции u в области D. du = Pdx+Qdy. Достаточность. Пусть выполнено, тогда Необходимость. Пусть интеграл не зависит от пути интегрирования. Фиксируем некоторую точку A0 в области D и определим функцию u(A) = u(x,y)=

В этом случае

XÎ (xÎ). Таким образом, существует производная =P. Аналогично, проверяется, что =Q. При сделанных предположениях функция u оказывается непрерывно - дифференцируемой и du = Pdx+Qdy.

32-33. Определение криволинейных интегралов 1 и 2 рода

Криволинейный интеграл по длине дуги (1 рода)

Пусть ф-ция f(x,y) определена и непрерывна в точках дуги АВ гладкой кривой К. Произвольно разобъем дугу на n элементарных дуг точками t0..tn пусть lk длина k частной дуги. Возьмем на каждой элементарной дуге произвольную точку N(k,k) и умножив сию точку на соотв. длину дуги составим три интегральную суммы:

1 = f(k,k)lk 2 = Р(k,k)хk 3 = Q(k,k)yk, где хk = x k -x k -1 , yk = y k -y k -1

Криволинейным интегралом 1 рода по длине дуги будет называться предел интегральной суммы 1 при условии, что max(lk)  0

Если предел интегральной суммы 2 или 3 при   0, то этот предел наз. криволинейным интегралом 2 рода, функции P(x,y) или Q(x,y) по кривой l = AB и обозначается:
или

сумму:
+
принято называть общим криволинейным интегралом 2 рода и обозначать символом:
в этом случае ф-ции f(x,y), P(x,y), Q(x,y) – называются интегрируемыми вдоль кривой l = AB. Сама кривая l наз контуром или путем интегрирования А – начальной, В – конечной точками интегрирования, dl – дифференциал длины дуги, поэтому криволинейный интеграл 1 рода наз. криволинейным интегралом по дуге кривой, а второго рода – по функции..

Из определения криволинейных интегралов следует, что интегралы 1 рода не зависят от того в каком направлении от А и В или от В и А пробегается кривая l. Криволинейный интеграл 1 рода по АВ:

, для криволинейных интегралов 2 рода изменение направления пробегания кривой ведет к изменению знака:

В случае, когда l – замкнутая кривая т. е. т. В совпадает с т. А, то из двух возможных направлений обхода замкнутого контура l называют положительным то направление, при котором область лежащая внутри контура остается слева по отношению к??? совершающей обход, т. е. направление движения против часовой стрелки. Противоположное направление обхода наз – отрицательным. Криволинейный интеграл АВ по замкнутому контуру l пробегаемому в положит направлении будем обозначать символом:

Для пространственной кривой аналогично вводятся 1 интеграл 1 рода:

и три интеграла 2 рода:

сумму трех последних интегралов наз. общим криволинейным интегралом 2 рода.

Некоторые приложения криволинейных интегралов 1 рода .

1.Интеграл
- длине дуги АВ

2.Механический смысл интеграла 1 рода.

Если f(x,y) = (x,y) – линейная плотность материальной дуги, то ее масса:

3.Координаты центра масс материальной дуги:

4. Момент инерции дуги лежащей в плоскости оху относительно начала координат и осей вращения ох, оу:

5. Геометрический смысл интеграла 1 рода

Пусть ф-ция z = f(x,y) – имеет размерность длины f(x,y)>=0 во всех точках материальной дуги лежащей в плоскости оху тогда:

, где S – площадь цилиндрической поверхности, кот состоит из перпендикуляров плоскости оху, вост. в точках М(x,y) кривой АВ.

Некоторые приложения криволинейных интегралов 2 рода.

Вычисление площади плоской области D с границей L

2.Работа силы. Пусть материальная т очка под действием силы перемещается вдоль непрерывной плоской кривой ВС, направясь от В к С, работа этой силы:

Формула Остроградского - Грина

Эта формула устанавливает связь между криволинейным интегралом по замкнутому контуры С и двойным интегралом по области, ограниченной этим контуром.

Определение 1. Область D называется простой областью, если её можно разбить на канечное число областей первого типа и независимо от этого на конечное число областей второго типа.

Теорема 1. Пусть в простой области определены функции P(x,y) и Q(x,y) непрерывные вместе со своими частными производными и

Тогда имеет место формула

где С - замкнутый контур области D.

Это формула Остроградского - Грина.

Условия независимости криволинейного интеграла от пути интегрирования

Определение 1. Говорят, что замкнутая квадрируемая область D односвязна, если любую замкнутую кривую l D можно непрерывно диформировать в точку так, что все точки этой кривой принадлежали бы области D (область без “дырок” - D 1), если такое деформирование невозможно, то область назывется многосвязной (с “дырками” - D 2).

Определение 2. Если значение криволинейного интеграла по кривой АВ не зависит от вида кривой, соединяющей точки А и В, то говорят, что этот криволинейный интеграл не зависит от пути интегрирования:

Теорема 1. Пусть в замкнутой односвязной области D определены непрерывные, вместе со своими частными производными функции P(x,y) и Q(x,y). Тогда следующие 4 условия равносильны (эквивалентны):

1) криволинейный интеграл по замкнутому контуру

где С - любой замкнутый контур в D;

2) криволинейный интеграл по замкнутому контуру не зависит от пути интегрирования в области D, т.е.

3) дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции F в области D, т.е., что существует функция F такая, что (х,у) D имеет место равенство

dF(x,y) = P(x,y)dx + Q(x,y)dy; (3)

4) для всех точек (х,у) D будет выполняться следующее условие:

Докажем по схеме.

Докажем, что из.

Пусть дано 1), т.е. = 0 по свойству 2 §1, что = 0 (по свойству 1 §1) .

Докажем, что из.

Дано, что кр.инт. не зависит от пути интегрирования, а только от выбора начала и канца пути

Рассмотрим функцию

Пакажем, что дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом функции F(x,y), т.е. , что

Зададим частный прирост

х F (x,y)= F(х + х, у) -F (x,y)= = == =

(по свойству 3 § 1, ВВ* Оу) = = P (c,y)х (по теореме о среднем, с -const), где x

(всилу непрерывности функции Р). Получили формулу (5). Аналогично получается формула (6).

Докажем, что из.

Дана формула

dF(x,y) = P(x,y)dx + Q(x,y)dy.

Очевидно, что = Р(х,у). Тогда

По условию теоремы правые части равенств (7) и (8) непрерывные функции, то по теореме о равенстве смешанных производных будут равны и левые части, т.е.., что

Докажем, что из 41.

Выберем любой замкнутый контур из области D, который ограничивает область D 1 .

Функции P и Q удовлетворяют условиям Остроградского-Грина:

В силу равенства (4) в левой части (9) интеграл равен 0, а это значит, что и правая часть равенства равна

Замечание 1. Теорема 1. может быть сформулировано в виде трёх самостоятельных теорем

Теорема 1*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (.1), т.е.

Теорема 2*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (3):

дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции F в области D.

Теорема 3*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (4):

Замечание 2. В теореме2* область D может быть и многосвязной.

Пусть дано плоское векторное поле . В дальнейшем мы будем предполагать, что функции Р и Q непрерывны вместе со своими производными и в некоторой области О плоскости

Рассмотрим в области G две произвольные точки Эти точки можно соединить различными линиями, лежащими в области вдоль которых значения криволинейного интеграла вообще говоря, различны.

Так, например, рассмотрим криволинейный интеграл

и две точки . Вычислим этот интеграл, во-первых, вдоль отрезка прямой , соединяющей точки А и В, и, во-вторых, вдоль дуги параболы соединяющей эти же точки. Применяя правила вычисления криволинейного интеграла, найдем

а) вдоль отрезка

б) вдоль дуги параболы:

Таким образом, мы видим, что значения криволинейного интеграла зависят от пути интегрирования, т. е. зависят от вида линии, соединяющей точки А и В. Наоборот, как нетрудно проверить, криволинейный интеграл вдоль тех же линий , соединяющих точки дает одно и то же значение, равное .

Разобранные примеры показывают, что криволинейные интегралы, вычисленные по различным путям, соединяющим две данные точки, в одних случаях различны между собой, а в других случаях принимают одно и то же значение.

Пусть А и В - две произвольные точки области G. Рассмотрим различные кривые, лежащие в области G и соединяющие точки А и В.

Если криволинейный интеграл по любому из этих путей принимает одно и то же значение, то говорят, что он не зависит от пути интегрирования.

В следующих двух теоремах приводятся условия, при которых криволинейный интеграл не зависит от пути интегрирования.

Теорема 1. Для того чтобы криволинейный интеграл в некоторой области G не зависел от пути интегрирования, необходимо и достаточно, чтобы интеграл по любому замкнутому контуру, лежащему в этой области, был равен нулю.

Доказательство. Достаточность.

Пусть интеграл по любому замкнутому контуру, проведенному в области G, равен нулю. Покажем, что этот интеграл не зависит от пути интегрирования. В самом деле, пусть А и В две точки, принадлежащие области G. Соединим эти точки двумя различными, произвольно выбранными кривыми лежащими в области G (рис. 257).

Покажем, что дуги образуют замкнутый контур Учитывая свойства криволинейных интегралов, получим

так как . Но по условию как интеграл по замкнутому контуру.

Следовательно, или Таким образом, криволинейный интеграл не зависит от пути интегрирования.

Необходимость. Пусть в области G криволинейный интеграл не зависит от пути интегрирования. Покажем, что интеграл по любому замкнутому контуру, лежащему в этой области, равен нулю. В самом деле, рассмотрим произвольный замкнутый контур, лежащий в области G, и возьмем на нем две произвольные точки А я В (см. рис. 257). Тогда

так как по условию . Итак, интеграл по любому замкнутому контуру L, лежащему в области G, равен нулю.

Следующая теорема дает удобные для практического использования условия, при соблюдении которых криволинейный интеграл не зависит от пути интегрирования.

Теорема 2.

Для того чтобы криволинейный интеграл не зависел от пути интегрирования в односвязной области необходимо и достаточно, чтобы в каждой точке этой области выполнялось условие

Доказательство. Достаточность. Пусть в области Покажем, что криволинейный интеграл по любому замкнутому контуру L, лежащему в области G, равен нулю. Рассмотрим площадку а, ограниченную контуром L. В силу односвязности области G площадка а целиком принадлежит этой области. На основании формулы Остроградского-Грина частности, на площадке Поэтому а следовательно, . Итак, интеграл по любому замкнутому контуру L в области G равен нулю. На основании теоремы 1 заключаем, что криволинейный интеграл не зависит от пути интегрирования.

Необходимость. Пусть криволинейный интеграл не зависит от пути интегрирования в некоторой области Q. Покажем, что во всех точках области

Предположим противное, т. е. что в некоторой точке области Пусть для определенности . В силу предположения о непрерывности частных производных и разность будет непрерывной функцией. Следовательно, около точки можно описать круг а (лежащий в области G), во всех точках которого, как и в точке разность будет положительной. Применим к кругу формулу Остроградского-Грина.

Рассмотрим криволинейный интеграл 2-го рода , где L – кривая, соединяющая точки M и N . Пусть функции P(x, y) и Q(x, y) имеют непрерывные частные производные в некоторой области D , в которой целиком лежит кривая L . Определим условия, при которых рассматриваемый криволинейный интеграл зависит не от формы кривой L , а только от расположения точек M и N .

Проведем две произвольные кривые MPN и MQN , лежащие в области D и соединяющие точки M и N (рис.1).

М N Рис. 1. P

Предположим, что , то есть

Тогда , где L – замкнутый контур, состав-ленный из кривых MPN и NQM (следовательно, его можно считать произвольным). Таким образом, условие независимости криволинейного интеграла 2-го рода от пути интегриро-вания равносильно условию, что такой интеграл по любому замкнутому контуру равен нулю.

Теорема 1. Пусть во всех точках некоторой области D непрерывны функции P(x, y) и Q(x, y) и их частные производные и . Тогда для того, чтобы для любого замкну-того контура L , лежащего в области D , выполнялось условие

Необходимо и достаточно, чтобы = во всех точках области D .

Доказательство .

1) Достаточность: пусть условие = выполнено. Рассмотрим произвольный замкну-тый контур L в области D , ограничивающий область S , и напишем для него формулу Грина:

Итак, достаточность доказана.

2) Необходимость: предположим, что условие выполнено в каждой точке области D , но найдется хотя бы одна точка этой области, в которой - ≠ 0. Пусть, например, в точке P(x 0 , y 0) - > 0. Так как в левой части неравенства стоит непре-рывная функция, она будет положительна и больше некоторого δ > 0 в некоторой малой области D` , содержащей точку Р . Следовательно,

Отсюда по формуле Грина получаем, что , где L` - контур, ограничивающий область D` . Этот результат противоречит условию . Следовательно, = во всех точках области D , что и требовалось доказать.

Замечание 1 . Аналогичным образом для трехмерного пространства можно доказать, что необходимыми и достаточными условиями независимости криволинейного интеграла

от пути интегрирования являются:

Замечание 2. При выполнении условий (28/1.18) выражение Pdx + Qdy +Rdz является полным дифференциалом некоторой функции и . Это позволяет свести вычисление криволинейного интеграла к определению разности значений и в конечной и начальной точках контура интегрирования, так как

При этом функцию и можно найти по формуле

где (x 0 , y 0 , z 0) – точка из области D , a C – произвольная постоянная. Действительно, легко убедиться, что частные производные функции и , заданной формулой (28/1.19), равны P, Q и R .