Хроматография как метод разделения и концентрирования. Методы выделения, разделения и концентрирования веществ в аналитической химии

Методы разделения и концентрирования занимают важное место среди приемов современной аналитической химии. В наиболее общем виде процесс химического анализа включает отбор пробы и ее подготовку к определению, собственно определение и обработку результатов. Современное развитие аналитического приборостроения и компьютерной техники обеспечивает надежное проведение второй и третьей стадий анализа, которое достаточно часто осуществляется в автоматическом режиме. Напротив стадия пробоподготовки, составной и неотъемлемой частью которой являются операции разделения и концентрирования, по-прежнему остается наиболее трудоемкой и наименее точной операции химического анализа. Если длительность измерения и обработки результатов имеет порядок минут и реже секунд, то продолжительность пробоподготовки – порядок часов и реже минут. По мнению специалистов, работающих в области экоаналитического контроля, только 10% суммарной погрешности анализа приходится на стадию измерения сигнала, 30% – на пробоподготовку и 60% – на проботбор. Ошибки, допущенные при отборе проб и их подготовке, могут полностью исказить результаты химического анализа.

Интерес к методам разделения и концентрирования не ослабевает по ряду причин, из которых можно выделить несколько: возрастающие требования к чувствительности анализа и его правильности, зависящей от возможности устранения матричного эффекта, а также требование обеспечения приемлемой стоимости анализа. Многие современные приборы позволяют проводить анализ без предварительного разделения и концентрирования, но они сами и их эксплуатация очень дороги. Поэтому часто более выгодно использовать так называемые комбинированные и гибридные методы, обеспечивающие оптимальное сочетание предварительное разделение и концентрирование компонентов с их последующим определением с помощью сравнительно недорогих аналитических приборов.

Основные понятия и термины. Виды концентрирования

Уточним смысловое понятие основных терминов, которые используют при описании методов разделения и концентрирования

Подразделением подразумевают операцию (процесс), в результате которой из исходной смеси веществ получается несколько фракций ее компонентов, то есть компоненты, составляющие исходную смесь, отделяются один от другого. При разделении концентрации компонентов могут быть близки друг к другу, но могут и отличаться.

Концентрирование - операция (процесс), в результате которой повышается отношение концентрации или количества микрокомпонентов по отношению к матрице или матричным компонентам. Под микрокомпонентами подразумевают компоненты, содержащиеся в промышленных, геологических, биологических и других материалах, а также в объектах окружающей среды, в концентрациях менее 100 мкг/г. Под матрицей в данном случае подразумевается среда, в которой находятся микрокомпоненты. Часто в качестве матрицы выступает вода или водный раствор кислот или солей. В случае твердых образцов концентрирование проводят после переведения образца в раствор, в этом случае в растворе наряду с микрокомпонентами присутствуют матричные компоненты. Концентрирование проводят в условиях, когда концентрации компонентов резко отличаются.

К концентрированию микрокомпонентов при их определении прибегают, прежде всего, в тех случаях, когда чувствительность методов прямого определения этих компонентов недостаточна. Главное достоинство концентрирования – снижение относительных, а иногда и абсолютных пределов обнаружения микрокомпонентов благодаря устранению или резкому уменьшению влияния макрокомпонентов на результаты определения. Концентрирование также необходимо, если компонент распределен в анализируемом образце негомогенно, оно позволяет работать с представительными пробами. Кроме того, концентрирование дает возможность обойтись без большого числа образцов сравнения, в том числе стандартных образцов, поскольку в результате концентрирования можно получать концентраты на единой основе, например на угольном порошке в случае атомно-эмиссионного анализа. В процессе концентрирования удобно также вводить так называемые внутренние стандарты, если они нужны. Однако концентрированию свойственны и недостатки: оно удлиняет и усложняет анализ, в ряде случаев возрастают потери и загрязнения, иногда уменьшается число определяемых компонентов.

Разделение и концентрирование имеют много общего, как в теоретическом аспекте, так и в технике исполнения. Очевидно, что концентрирование является частным случаем разделения. Выделение "концентрирования" в разряд самостоятельных понятий аналитической химии оправдано благодаря практической важности этой операции в химическом анализе и различиям в его назначении по сравнению с разделением. Благодаря применению разделения удается упростить анализ и устранить влияние мешающих компонентов, тогда как основная цель концентрирования – повышение чувствительности определения.

(Вопрос 1). Различают абсолютное и относительное концентрирование. При абсолютном концентрировании микрокомпоненты переводят из большой массы образца в малую массу концентрата; при этом концентрация микрокомпонентов повышается. Примером абсолютного концентрирования может служить упаривание матрицы при анализе вод, растворов минеральных кислот, органических растворителей. Скажем, при упаривании 20 мл раствора свинца до 1 мл мы увеличиваем отношение массы определяемого компонента к общей массе пробы в 20 раз (при условии, что определяемый компонент полностью остался в растворе). Другими словами, мы сконцентрировали в 20 раз.

В результате проведения относительного концентрирования происходит замена матрицы, по тем или иным причинам затрудняющей анализ, на иную органическую или неорганическую матрицу и возрастает соотношение между микро- и главными мешающими макрокомпонентами. В этом случае отношение массисходной и конечной проб большого значения не имеет.Допустим, что в тех же 20 мл раствора свинца содержался еще и цинк, причем его было в 100 раз больше, чем свинца. Мы провели концентрирование свинца, например экстракцией, при этом количество цинка сократили в 20 раз, теперь его лишь в 5 раз больше, чем свинца. Мы можем получить концентрат того же объема в 20 мл, при этом концентрация свинца не изменилась, но зато изменилась концентрация цинка, причем те количества цинка, что остались в растворе, уже не будут мешать последующему определению свинца. На практике абсолютное и относительное концентрирование часто комбинируют; заменяют матричные элементы на иную органическую или неорганическую матрицу и «сжимают» концентрат микроэлементов до необходимой массы дополнительным воздействием, например простым упариванием.

Практика химического анализа требует как индивидуального , так и группового концентрирования. Индивидуальное концентрирование – это операция, в результате которой из анализируемого объекта выделяют один микрокомпонент или последовательно несколько микрокомпонентов, тогда как при групповом концентрировании за один прием выделяют сразу несколько микрокомпонентов. Оба способа используют на практике. Выбор способа зависит от природы анализируемого объекта и используемого метода концентрирования. Групповое концентрирование обычно сочетают с последующим определением методами хроматографии, хромато-масс-спектрометрии, инверсионной вольтамперометрии, а индивидуальное – с такими одноэлементными методами анализа, как спектрофотометрия, атомно-абсорбционная спектрометрия, флуориметрия.

Концентрирование можно осуществить двумя способами: удалением матрицы и выделением микроэлементов. Выбор способа зависит от характера анализируемого объекта. Если матрица простая (один два элемента) легче удалять именно матрицу. Если же основа многоэлементная (сложные минералы и сплавы, почвы), выделят микроэлементы. Выбор зависит и от используемого метода концентрирования. Например, соосаждение используют только для выделения микроэлементов, а выпаривание применяют для отделения матрицы сравнительно простых объектов: природных вод, кислот и органических растворителей.

Ф КГМУ 4/3-04/01

ИП №6 УМС при КазГМА

от 14 июня 2007 г.

Карагандинский государственный медицинский университет

Кафедра фармацевтических дисциплин с курсом химии

Тема: Методы выделения, разделения и концентрирования веществ в аналитической химии.

Дисциплина Аналитическая химия

Специальность 051103 «Фармация»

Время (продолжительность) 50минут

Караганда 2011 г.

Утверждена на заседании курса химии

«29». 08. 2011 г. Протокол № 1

Ответственный за курс ______________Л.М. Власова
Тема: Методы выделения, разделения и концентрирования веществ в аналитической химии.
Цель: Сформировать представления о применении методов выделения, разделения и концентрирования веществ в аналитической химии с целью обеспечения надежных результатов анализа, изучить методы маскирования, применяемые для устранения мешающих компонентов.
План:


  1. Маскирование.

  2. Разделение и концентрирование.

  3. Количественные характеристики разделения и концентрирования.

  4. Осаждение и соосаждение.

  5. Адсорбция, окклюзия, полиморфизм.

Иллюстративный материал: презентация.

Методы маскирования, разделения и концентрирования.
Нередко в практике химического анализа применяемый метод обнаружения или определения нужных компонентов не обеспечивает надежных результатов без предварительного устранения влияния мешающих компонентов (в том числе и основных, составляющих «матрицу» анализируемого образца). Устранить мешающие компоненты можно двумя способами. Один из них – маскирование – перевод мешающих компонентов в такую форму, которая уже не оказывает мешающего влияния. Эту операцию можно провести непосредственно в анализируемой системе, причем мешающие компоненты остаются в этой же системе, например в том же растворе.

Маскирование не всегда удается осуществить, особенно при анализе многокомпонентных смесей. В этом случае используют другой способ – разделение веществ (или концентрирование).


  1. Маскирование

Маскирование - это торможение или полное подавление химической реакции в присутствии веществ, способных изменить ее направление или скорость. При этом не происходит образования новой фазы, в чем состоит основное преимущество маскирования перед разделением, поскольку исключаются операции, связанные с отделением фаз друг от друга. Различают два вида маскирования – термодинамическое (равновесное) и кинетическое (неравновесное). При термодинамическом маскировании создают условия, при которых условная константа реакции понижается до такой степени, что реакция идет незначительно. Концентрация маскируемого компонента становится недостаточной для того, чтобы надежно зафиксировать аналитический сигнал. Кинетическое маскирование основано на увеличение разницы между скоростями реакции маскируемого и определяемого веществ с одним и тем же реагентом. Например, индуцированная реакция MnO - 4 c CI - в присутствии Fe (II) замедляется в присутствии фосфат – ионов.

Можно выделить несколько групп маскирующих веществ.


  1. Вещества, образующие с мешающими веществами более устойчивые соединения, чем с определяемыми. Например, образование комплекса Fe (II) с тиоцианат – ионом красного цвета можно предотвратить введением в раствор фторида натрия. Фторид – ионы связывают железо (III) в бесцветный комплекс FeF 3- 6 , более устойчивый, чем Fe (SCN) n (n -3) , что позволяет устранить мешающее влияние Fe (III) при обнаружении, Со(II) в виде комплекса синего цвета Со (SCN) n (n -2) . Триэтаноламин удобен для маскирования Mn (II), Fe (III) и AI (III) в щелочных растворах при комплексонометрическом титровании кальция, магния, никеля и цинка.

  2. Вещества, предотвращающие кислотно – основные реакции с образованием малорастворимых гидроксидов. Например, в присутствии винной кислоты гидрат оксида Fe (III) не осаждается аммиаком вплоть до рН 9-10.

  3. Вещества, изменяющие степень окисления мешающего иона. Например, для устранения мешающего влияния Cr (III) при комплексонометрическом титровании алюминия и железа рекомендуется его окислить до Cr (VI).

  4. Вещества, осаждающие мешающие ионы, но осадок при этом можно не отделять. Например, при комплексонометрическом титровании кальция в присутствии магния, который осаждают в виде гидроксида, но не отделяют.

  5. Вещества со специфическим действием. Например, полярографические волны подавляются в присутствии некоторых поверхностно – активных веществ (ПАВ).
Иногда маскирование сочетает указанные приемы. Например, ионы Cu (II) можно замаскировать цианид -, тиосульфат – ионами. При этом Cu (II) восстанавливается до Cu (I), а затем с избытком маскирующего вещества образует комплексы состава Cu (CN) 4 3- , Cu (S 2 O 3) 2 3- .

Для оценки эффективности маскирования пользуются индексом маскирования . Это логарифм отношения общей концентрации мешающего вещества к его концентрации, оставшейся не связанной. Индекс маскирования можно рассчитать, зная условные константы равновесия соответствующих маскирующих реакций.

В химическом анализе часто используют следующие маскирующие вещества: комплексоны; оксикислоты (винная, лимонная, малоновая, салициловая); полифасфаты, способные к образованию комплексов с шестичленной хелатной структурой (пиро- и триполифасфаты натрия); пилиамины; глицерин; тиомочевина; галогенид-, цианид-, тиосульфат – ион; аммиак, а также смесь веществ [например, KI в смеси с NH 3 при комплексонометрическом титровании Cu (II) в присутствии Hg (II)].

Наряду с маскированием в химическом анализе иногда прибегают к демаскированию – переводу замаскированного вещества в форму, способную вступать в реакции, обычно свойственные ему. Это достигается путем протонирования маскирующего соединения (если оно является слабым основанием), необратимым его разрушением или удалением (например, при нагревании), изменением степени окисления, связыванием в более прочное соединение. Например, демаскирование ионов металлов из комплексов с NH 3 , ОН - , CN - , F - , можно осуществлять уменьшением рН. Комплексы кадмия и цинка с цианид – ионом разрушаются при действии формальдегида, который реагирует с цианид – ионом, образуя нитрил гликолевой кислоты. Пероксидные комплексы, например титана (IV), разлагаются кипячением в кислых растворах. Демаскирования можно достигнуть также окислением маскирующего соединения (например, окисление ЭДТА) или изменением степени окисления маскируемого вещества (Fe 3- ↔ Fe 2-).

2. Разделение и концентрирование.
Необходимость разделения и концентрирования может быть обусловлена следующими факторами: 1)проба содержит компоненты, мешающие определению; 2) концентрация определяемого компонента ниже предела обнаружения метода; 3) определяемые компоненты неравномерно распределены в пробе; 4) отсутствуют стандартные образцы для градуировки приборов; 5) проба высокотоксична, радиоактивна или дорога.

Разделение - это операция (процесс), в результате которой компоненты, составляющие исходную смесь, определяются один от другого.

Концентрирование – операция (процесс), в результате которой повышается отношение концентрации или количества микрокомпонентов к концентрации или количеству макрокомпонента.

При разделении концентрации компонентов могут быть близки друг к другу, но могут и отличаться. Концентрирование проводят в условиях, когда концентрации компонентов резко отличаются.

При концентрировании вещества, присутствующие в малом количестве, либо собираются в меньшем объеме или массе (абсолютное концентрирование ), либо отделяются от макрокомпонента таким образом, что отношение концентрации микрокомпонента к концентрации макрокомпонента повышается (относительное концентрирование ). Относительное концентрирование можно рассматривать как разделение с тем отличием, что исходные концентрации компонентов здесь резко отличаются. Примером абсолютного концентрирования может служить упаривание матрицы при анализе вод, растворов минеральных кислот, органических растворителей. Главная цель относительного концентрирования – замена матрицы, по тем или иным причинам затрудняющей анализ, на иную органическую или неорганическую. Например, при определении микропримесей в серебре высокой чистоты матричный элемент экстрагируют О – изопропил – N – этилтиокарбинатом в хлороформе и затем после выпаривания водной фазы до небольшого объема любым методом определяют микрокомпоненты.

Различают групповое и индивидуальное выделение и концентрирование: при групповом - за один прием отделяется несколько компонентов, при индивидуальном - из образца выделяют один компонент или последовательно несколько компонентов. При использовании многоэлементных методов определения (атомно – эмиссионный, рентгенофлуоресцентный, искровая масс – спектрометрия, нейтронно – активационный) предпочтительнее групповое разделение и концентрирование. При определении методами фотометрии, флуориметрии, атомно – абсорбционным, напротив, целесообразнее индивидуальное выделение компонента.

Разделение и концентрирование имеют много общего как в теоретическом аспекте, так и в техническом исполнении. Методы для решения задач одни и те же, но в каждом конкретном случае возможны модификации, связанные с относительными количествами веществ, способом получения и измерения аналитического сигнала. Например, для разделения и концентрирования применяют методы экстракции, соосаждения, хроматографии и др. Хроматографию используют главным образом при разделении сложных смесей на составляющие, соосаждение – при концентрировании (например, изоморфное соосаждение радия с сульфатом бария). Можно рассмотреть классификацию методов на основе числа фаз, их агрегатного состояния и переноса вещества из одной фазы в другую. Предпочтительны методы, основанные на распределении вещества между двумя фазами такими, как жидкость – жидкость, жидкость – твердое тело, жидкость – газ и твердое тело – газ. При этом однородная система может превращаться в двухфазную путем какой - либо вспомогательной операции (осаждение и соосаждение, кристаллизация, дистилляция, испарение и др.), либо введением вспомогательной фазы – жидкой, твердой, газообразной (таковы методы хроматографии, экстракции, сорбции).

Существуют методы, основанные на разделении компонентов в одной фазе, например, электродиализ, электрофорез, диффузионные и термодиффузионные методы. Однако и здесь можно условно говорить о распределении компонентов между двумя «фазами», поскольку компоненты под воздействием приложенной извне энергии разделяются на две части, которые могут быть изолированы друг от друга, например полупроницаемой мембранной.

Для каждой сферы приложения химического анализа имеется свой выбор методов разделения и концентрирования. В нефтехимической промышленности – в основном хроматографические методы, в токсикологической химии – экстракция и хроматография, в электронной промышленности – дистилляция и экстракция.

Арсенал методов разделения и концентрирования велик и постоянно пополняется. Для решения задач используют почти все химические и физические свойства веществ и процессы, происходящие с ними.
3. Количественные характеристики разделения и концентрирования.
Большинство методов разделения основано на распределении вещества между двумя фазами (I и II). Например, для вещества А имеет равновесие

А I ↔ A II (1.1)
Отношение общих концентраций вещества А в обеих фазах называют коэффициентом распределения D:

D= С II /С I (1.2)
Абсолютно полное извлечение, а следовательно, и разделение теоретически неосуществимы. Эффективность извлечения вещества А из одной фазы в другую можно выразить степенью извлечения R:
R = Q II / Q II + Q I , (1.3)
где Q – количество вещества; обычно R выражают в процентах.

Очевидно, что для полного извлечения компонента значение R должно быть как можно ближе к 100%.

На практике извлечение считают количественным, если R A ≥ 99,9%. Это означает, что 99,9% вещества А должно перейти в фазу II. Для мешающего компонента В должно выполняться условие 1/R В ≥ 99,9, т.е. в фазу II должно перейти не более 0,1 % вещества В.

Количественной характеристикой разделения вещества А и В, для которых устанавливаются равновесия между фазами I и II, является коэффициент разделения ά А/В:
ά А/В = D A / D B (1.4)

Для разделения необходимо, чтобы значение ά А/В было высоким, а произведение D A D B - близким к единице. Пусть ά А/В = 10 4 . При этом возможны следующие комбинации значений D A и D B:
D A D B R A , % R B , %

10 5 10 100 90,9

10 2 10 -2 99,0 0,99

10 -1 10 -5 9,1 0,001
Как видно, разделение может быть достигнуто при D A D B =1.

Для оценки эффективности концентрирования служит коэффициент концентрирования S к:
S к = q/Q / q проба /Q проба, (1.5)
где q, q проба - количество микрокомпонента в концентрате и пробе; Q, Q проба - количество макрокомпонента в концентрате и пробе.

Коэффициент концентрирования показывает, во сколько раз изменяется отношение абсолютных количеств микро – и макрокомпонентов в концентрате по сравнению с этим же отношением в исходной пробе.
4.Осаждение и соосаждение
К методам разделения и концентрирования можно отнести осаждение с образованием кристаллических и аморфных осадков.

Условия образования кристаллических осадков.

Необходимо:


  1. Вести осаждение из разбавленных растворов разбавленным раствором осадителя;

  2. Прибавлять осадитель медленно, по каплям;

  3. Непрерывно перемешивать стеклянной палочкой;

  4. Вести осаждение из горячего раствора (иногда нагревают и раствор осадителя);

  5. Отфильтровывать осадок только после охлаждения раствора;

  6. Прибавлять при осаждении вещества, повышающие растворимость осадка.

Условия образования аморфных осадков.
Аморфные осадки возникают в результате коагуляции, т. е. слипания частиц и их агрегации. Процесс коагуляции может быть вызван прибавлением электролита. Осаждать следует:


  1. Из горячих растворов;

  2. В присутствии электролита (соли аммония, кислоты);

  3. С целью получения плотного осадка, который хорошо отмывается и быстро оседает, осаждения ведут из концентрированных растворов концентрированными растворами осадителя.

Загрязнение осадка веществами, которые должны были оставаться в растворе, называется соосаждением .

Например, если на раствор, содержащий смесь BaCL 2 с FeCL 3 подействовать H 2 SO 4 , то следовало бы ожидать, что будет осаждаться только BaSO 4 , т.к. соль Fe 2 (SO4) 3 растворима в воде. В действительности эта соль тоже частично осаждается. В этом можно убедиться, если осадок отфильтровать, промыть и прокалить. Осадок BaSO 4 оказывается не чисто белым, а коричневым за счет Fe 2 O 3 , образующегося в результате прокаливания Fe 2 (SO 4) 3

Fe 2 (SO 4) 3 → Fe 2 O 3 + 3SO 3

Загрязнение осадков соосаждением растворимыми соединениями происходит за счет химического осаждения и различают последующие осаждения, при котором происходит загрязнение осадков малорастворимыми веществами. Это явление происходит потому, что вблизи поверхности осадка за счет адсорбционных сил повышается концентрация ионов осадителя и превышается ПР. Н-р, при осаждении ионов Ca 2+ оксалатом аммония в присутствии Mg 2+ , выделяется осадок CaC 2 O 4 , оксалат магния остается в растворе. Но при выдерживании осадка CaC 2 O 4 под маточным раствором через некоторое время он загрязняется малорастворимым MgC 2 O 4 , который медленно выделяется из раствора.

Соосаждение имеет большое значение в аналитической химии. Это один из источников погрешностей в гравиметрическом определении. Но соосаждение может играть и положительную роль. Например, когда концентрация определяемого компонента настолько мала, что осаждение практически не возможно, тогда проводят соосаждение определяемого микрокомпонента с каким – либо подходящим коллектором (носителем). Приемом соосаждения микрокомпонентов с коллектором пользуются очень часто в методе концентрирования. Особенно велико его значение в химии рассеянных и редких элементов.


  1. Существует несколько типов соосаждения, различают адсорбцию, окклюзию, изоморфизм.

Поглощение одного вещества другим, происходящее на поверхности раздела фаз называется адсорбцией . Загрязняющее вещество – адсорбат , адсорбируется твёрдой поверхностью – адсорбентом .
Адсорбция идёт по следующим правилам:


  1. Преимущ. осадок (например, BaSO 4) адсорбирует сначала свои собственные ионы, т. е. Ba 2+ и SO 4 2- , смотря по тому, какие из них присутствуют в растворе в избытке;

  2. Противоположно, находящиеся в растворе одинаковой концентрации, преимущественно будут адсорбироваться ионы с большим зарядом;

  3. Из ионов с одинаковым зарядом преимущественно адсорбируются ионы, концентрация которых в растворе больше;

  4. Из ионов, одинаково заряженных и имеющих одинаковую концентрацию, преимущественно адсорбируются ионы, которые сильнее притягиваются ионами кристаллической решётки (правило Пането - Фаянса).
Адсорбция является обратимым процессом, параллельно адсорбции протекает десорбция, т.е. переход адсорбированных ионов или молекул с поверхности адсорбента в раствор. Одновременное течение этих двух процессов приводит к состоянию равновесия, называемого адсорбционным равновесием.

Адсорбционное равновесие зависит от следующих факторов:

1. Влияние величины поверхности адсорбента

Поскольку вещества или ионы адсорбируются на поверхности адсорбента, количество адсорбированного данным адсорбентом вещества прямо пропорционально величине общей поверхности его. С явлением адсорбции при анализе больше всего приходится считаться тогда, когда имеют дело с аморфными осадками, т.к. частицы их образуются в результате сцепления между собой большого количества небольших первичных частиц и поэтому имеют огромную общую поверхность.

Для кристаллических осадков адсорбция играет меньшую роль.

2. Влияние концентрации.

По изотерме адсорбции можно установить


  1. степень адсорбции падает с увеличением концентрации вещества в растворе

  2. с увеличением концентрации вещества в растворе увеличивается абсолютное количество адсорбированного вещества

  3. с увеличением концентрации вещества в растворе количество адсорбированного вещества стремиться к некоторому конечному значению
адсорбция

вещества на

концентрация вещества в растворе

3. Влияние температуры

Адсорбция – процесс экзотермический, и =, её течению способствует понижение температуры. Повышение температуры способствует десорбции.


  1. Влияние природы адсорбированных ионов.
Адсорбент одни ионы адсорбирует сильнее, чем другие. Это связанно с его избирательностью. В первую очередь, осадок адсорбирует те ионы, которые составляет его кристаллическую решетку. Противоионы адсорбируются согласно следующим правилам

  1. адсорбируются ионы с большим зарядом

  2. из ионов с одинаковым зарядом адсорбируются те ионы, концентрация которых в растворе выше

  3. из ионов, одинаково заряженных и имеющих одинаковую концентрацию, преимущественно адсорбируются ионы, которые сильнее притягиваются ионами кристаллической решетки (правило Панета – Фаянса.)
Более сильнее притягиваются те посторонние ионы, которые образуют с ионами решетки наименее растворимые или малоионизированные соединения, например, при осаждении AgJ в растворе реакции AgNO 3 + KJ, содержащем CH 3 COO-, будут адсорбироваться CH 3 COOAg, а не AgNO 3 , т.к. 1-ая соль менее растворима в воде, чем вторая.

Окклюзия. При окклюзии загрязняющие вещества находятся внутри частиц осадка. Окклюзия отличается от адсорбции тем, что соосажденные примеси находят не на поверхности, а внутри частицу осадка.

Причины возникновения окклюзии.

Механический захват посторонних примесей. Этот процесс идет тем быстрее, чем быстрее идет кристаллизация.

1) не бывает «идеальных» кристаллов, в них имеются мельчайшие трещинки, пустоты, которые заполняются маточным раствором. Мельчайшие кристаллики могут слипаться, захватывая маточный раствор.

2) Адсорбция в процессе формирования кристаллизации осадка.

В процессе роста кристалла от мельчайших зародышевых кристалликов на новой поверхности непрерывно адсорбируются различные примеси из раствора, при этом соблюдаются все правила адсорбции.

3) Образование химических соединений между осадком и соосаждаемой примесью.

Очень важное значение при окклюзии имеет порядок сливания растворов. Когда раствор во время осаждения содержит в избытке анионы, входящие в состав осадка, то происходит преимущественно окклюдирование посторонних катионов и наоборот, если раствор содержит в избытке одноименные катионы, то происходит окклюдирование посторонних анионов.

Например, при образовании BaSO 4 (BaCL 2 + NаSO 4) в избытке SO 4 2- окклюдируют ионы Na + , в избытке Ba 2 + - CL -

Для ослабления окклюзий посторонних катионов нужно вести осаждение так, чтобы кристаллы осадка росли в среде, содержащий избыток собственных катионов осадка. Наоборот, желая получить осадок, свободный от окклюдированных посторонних анионов, нужно вести осаждение в среде, содержащий избыток собственных анионов осаждаемого соединения.

На величину окклюзии влияет скорость приливания осадителя. При, медленном приливании осадителя получаются обычно более чистые осадки. Соосаждение происходит только во время образования осадка.

Изоморфизм – это образование смешанных кристаллов.

Изоморфными называются такие вещества, которые способны кристаллизироваться образуя совместную кристаллическую решетку, причем получаются так называемые смешанные кристаллы.

Типичным примером являются различные квасцы. Если растворить бесцветные кристаллы алюмо - калиевых квасцов KAl (SO 4) 2 12Н 2 О с интенсивно – фиолетовыми хромо – калиевыми…КСr(SO 4) 2 12H 2 O, то в результате кристаллизации образуются смешанные кристаллы. Окраска этих кристаллов тем более интенсивнее, чем больше была концентрация KCr(SO 4) 2.

Изоморфные соединения обычно образуют одинаковые по форме кристаллы.

Сущность изоморфизма заключается в том, что ионы, имеющие близкие радиусы, могут замещать друг друга в кристаллической решетке. Например, ионы Ra и Ba имеют близкие радиусы, поэтому при осаждении BaSO 4. Из раствора содержащего малые количества Ra 2+ , будут осаждаться изоморфные кристаллы. В отличие от ионов KCr(SO 4) 2 ,имеющих меньший атомный радиус.

3. Соосаждение является главным источником погрешностей гравиметрического анализа.

Уменьшить соосаждение, можно правильно выбрав ход анализа, рационально выбрать осадитель. При осаждении органическими осадителями наблюдается гораздо меньшее соосаждение посторонних веществ, чем при применении неорганических осадителей. Осаждение надо проводить в условиях, при которых образуется крупно кристаллический осадок. Выдерживать осадок под маточным раствором достаточно долго.

Для очистки осадка от адсорбированных примесей, необходимо его тщательно промывать. Для удаления примесей, полученных в результате окклюзии и изоморфизма, осадок подвергают переосаждению.

Например, при определении Ca 2+ , их осаждают в виде CaC 2 O 4 , если присутствуют в растворе Mg 2+ , то осадок получается сильно загрязненный примесью MgC 2 O 4 . Чтобы освободиться от примеси осадок растворяют в HCL. При этом получается раствор, концентрация Mg 2+ в котором ниже изначального раствора. Полученный раствор нейтрализуют и повторяют осаждение снова. Осадок получается практически свободным от Mg 2+ .

4. Аморфные осадки образуются из коллоидных растворов путем коагуляця, т. с. Соединения частиц в более крупные агрегаты, которые под действием сил тяжести будут оседать на дно сосуда.

Коллоидные растворы обладают устойчивостью вследствие наличия одноименного заряда, сольватной или гидратной оболочки = Чтобы началось осаждение необходимо нейтрализовать заряд путем прибавления какого – либо электролита. Нейтрализуя заряд, электролит позволяет частицам сцепляться друг с другом.

Для удаления сольватных оболочек используют такой прием как высаливание, т. е. прибавление электролита высокой концентрации, ионы которого в растворе выбирают молекулы растворителя у коллоидных частиц и сами сольватируются.

Коагуляции способствует повышение температуры. Также осаждение аморфных осадков необходимо вести из концентрированных растворов, тогда осадки получаются более плотными, быстрее оседают и легче отмываются от примесей.

Аморфные осадки после осаждения не выдерживают под маточным раствором, а быстро фильтруют и промывают, т. к. осадок в противном случае получается студенистым.

Обратный процессу коагуляции, является процесс пептизации. При промывании аморфных осадков водой, они опять могут перейти в коллоидное состояние, этот раствор проходит через фильтр и часть осадка т. о. теряется. Это объясняется тем, что из осадка вымываются электролиты, поэтому скоагулированные частицы вновь получают заряд и начинают отталкиваться друг от друга. В результате крупные агрегаты распадаются на мельчайшие коллоидные частицы, которые свободно проходят через фильтр.

Чтобы предотвратить пептизацию, осадок промывают не чистой водой, а разбавленным раствором, какого – либо электролита.

Электролит должен быть веществом летучим и полностью удаляться при прокаливании. В качестве таких электролитов используют аммонийные соли или летучие кислоты.

Литература:
1.Харитонов Ю.А. Аналитическая химия.кн.1,2. М.; ВШ, 2003

2. Цитович И.К. Курс аналитической химии. М., 2004.

3. Васильев В.П. Аналитическая химия. кн. 1,2. М., Дрофа, 2003.

4. Кельнер Р., Мерме Ж.М., Отто М., Видмер Г.М. Аналитическая химия. т. 1, 2. Перевод с англ. яз. М., Мир, 2004.

5. Отто М. Современные методы аналитической химии т.1,2. М., Техносфера, 2003.

6. Пономарев В.Д. Аналитическая химия, ч. 1, 2. М., ВШ, 1982.

7. Золотов Ю.А. Основы аналитической химии,т.1,2, ВШ, 2000.

Контрольные вопросы (обратная связь)


  1. Перечислите факторы, от которых зависит коэффициент распределения.

  2. Приведите пример маскирующих веществ, применяемых в химическом анализе.

  3. Что можно отнести к методам разделения и концентрирования.

  4. От каких факторов зависит степень извлечения вещества?

  5. Объясните преимущества аморфного осадка перед кристаллическим при осаждении микрокомпонентов.

  6. Какие виды взаимодействия существуют между веществом и сорбентом?

Методы разделения и концентрирования

Общие сведения о разделении и концентрировании

Разделение – это операция, позволяющая отделить компоненты пробы друг от друга.

Его используют, если одни компоненты пробы мешают определению или обнаружению других, т. е. когда метод анализа недостаточно селективен и надо избежать наложения аналитических сигналов. При этом обычно концентрации разделяемых веществ близки .

Концентрирование – это операция, позволяющая увеличить концентрацию микрокомпонента относительно основных компонентов пробы (матрицы).

Его используют, если концентрация микрокомпонента меньше предела обнаружения С min , т. е. когда метод анализа недостаточно чувствителен . При этом концентрации компонентов сильно различаются . Часто концентрирование совмещается с разделением.

Виды концентрирования .

1. Абсолютное : микрокомпонент переводят из большого объёма или большой массы пробы (V пр или m пр) в меньший объём или меньшую массу концентрата (V конц или m конц). В результате концентрация микрокомпонента увеличивается в n раз:

где n степень концентрирования .

Чем меньше объём концентрата, тем больше степень концентрирования. Например , 50 мг катионита поглотили германий из 20 л водопроводной воды, затем германий десорбировали 5 мл кислоты. Следовательно, степень концентрирования германия составила:

2. Относительное (обогащение) : микрокомпонент отделяется от макрокомпонента так, что отношение их концентраций увеличивается. Например , в исходной пробе отношение концентраций микро- и макрокомпонентов составляло 1: 1000, а после обогащения – 1: 10. Обычно это достигается путём частичного удаления матрицы .

Разделение и концентрирование имеют много общего , для этих целей используются одни и те же методы . Они очень разнообразны. Далее будут рассмотрены методы разделения и концентрирования, имеющие наибольшее значение в аналитической химии.

Классификация методов разделения и концентрирования

Существует множество классификаций методов разделения и концентрирования, основанных на разных признаках . Рассмотрим важнейшие из них.

1. Классификация по природе процесса дана на рис.62.

Рис. 62.Классификация методов разделения по природе процесса

Химические методы разделения и концентрирования основаны на протекании химической реакции , которая сопровождается осаждением продукта, выделением газа. Например , в органическом анализе основным методом концентрирования является отгонка : при термическом разложении матрица отгоняется в виде СО 2 ­, Н 2 О­, N 2 ­, а в оставшейся золе можно определять металлы.

Физико-химические избирательном распределении вещества между двумя фазами . Например , в нефтехимической промышленности наибольшее значение имеет хроматография.


Физические методы разделения и концентрирования чаще всего основаны на изменении агрегатного состояния вещества.

2. Классификация по физической природе двух фаз . Распределение вещества может осуществляться между фазами, которые находятся в одинаковом или разном агрегатном состоянии: газообразном (Г), жидком (Ж), твёрдом (Т). В соответствии с этим различают следующие методы (рис.63).

Рис. 63. Классификация методов разделения по природе фаз

В аналитической химии наибольшее значение нашли методы разделения и концентрирования, которые основаны на распределении вещества между жидкой и твёрдой фазой .

3. Классификация по количеству элементарных актов (ступеней) .

§ Одноступенчатые методы – основаны на однократном распределении вещества между двумя фазами. Разделение проходит в статических условиях.

§ Многоступенчатые методы – основаны на многократном распределении вещества между двумя фазами. Различают две группы многоступенчатых методов:

– с повторением процесса однократного распределения (например , повторная экстракция). Разделение проходит в статических условиях;

– методы, основанные на движении одной фазы относительно другой (например , хроматография). Разделение проходит в динамических условиях

3. Классификация по виду равновесия (рис.64).

Рис. 64. Классификация методов разделения по виду равновесия

Термодинамические методы разделения основаны на различии в поведении веществ в равновесном состоянии . Они имеют наибольшее значение в аналитической химии.

Кинетические методы разделения основаны на различии в поведении веществ во время процесса , ведущего к равновесному состоянию . Например , в биохимических исследованиях наибольшее значение имеет электрофорез. Остальные кинетические методы используются для разделения частиц коллоидных растворов и растворов высокомолекулярных соединений. В аналитической химии эти методы применяются реже.

Хроматографические методы основаны и на термодинамическом, и на кинетическом равновесии. Они имеют огромное значение в аналитической химии, поскольку позволяют провести разделение и одновременно качественный и количественный анализ многокомпонентных смесей.

Экстракция как метод разделения и концентрирования

Экстракция – это метод разделения и концентрирования, основанный на распределении вещества между двумя несмешивающимися жидкими фазами (чаще всего – водной и органической).

С целью экстракционного разделения создают такие условия, чтобы один компонент полностью перешёл в органическую фазу, а другой – остался в водной. Затем делят фазы с помощью делительной воронки .

С целью абсолютного концентрирования вещество переводят из большего объёма водного раствора в меньший объём органической фазы, в результате чего концентрация вещества в органическом экстракте увеличивается.

С целью относительного концентрирования создают такие условия, чтобы микрокомпонент перешёл в органическую фазу, а бóльшая часть макрокомпонента осталась бы в водной. В результате в органическом экстракте отношение концентраций микро- и макрокомпонента увеличивается в пользу микрокомпонента.

Достоинства экстракции :

§ высокая избирательность;

§ простота выполнения (нужна только делительная воронка);

§ малая трудоёмкость;

§ быстрота (3–5 мин);

§ экстракция очень хорошо сочетается с методами последующего определения, в результате чего возник ряд важных гибридных методов (экстракционно-фотометрический, экстракционно-спект-ральный и др.).

Соосаждение как метод разделения и концентрирования

Соосаждение – это захват микрокомпонента осадком-коллектором во время его образования, причём микрокомпонент переходит в осадок из ненасыщенного раствора (ПС < ПР).

В качестве коллекторов используют неорганические и органические малорастворимые соединения с развитой поверхностью . Разделение фаз проводят путём фильтрования .

Соосаждение применяют с целью:

§ концентрирования примесей как очень эффективного и одного из наиболее важных методов, который позволяет повысить концентрацию в 10–20 тыс. раз;

§ отделения примесей (реже).

Сорбция как метод разделения и концентрирования

Сорбция – это поглощение газов или растворённых веществ твёрдыми или жидкими сорбентами.

В качестве сорбентов используют активные угли, Al 2 O 3 , кремнезём, цеолиты, целлюлозу, природные и синтетические сорбенты с ионогенными и хелатообразующими группами.

Поглощение веществ может происходить на поверхности фазы (ад сорбция ) или в объёме фазы (аб сорбция ). В аналитической химии чаще всего применяют адсорбцию с целью:

§ разделения веществ, если создать условия для селективного поглощения;

§ концентрирования (реже).

Кроме того, сорбция в динамических условиях положена в основу важнейшего метода разделения и анализа – хроматографии.

Ионный обмен – это обратимыйстехиометрический процесс, который происходит на границе раздела фаз ионит – раствор электро
лита
.

Иониты – это высокомолекулярныеполиэлектролиты различного строения и состава.

Основным свойством ионитов является то, что они поглощают из раствора катионы или анионы , выделяя при этом в раствор эквивалентное число ионов того же знака заряда .

Процесс ионного обмена описывается законом действия масс :

где А и В – ионы в растворе, и – ионы в фазе ионита.

Это равновесие характеризуется константой обмена (К ):

где а – активности ионов.

Если К > 1, то ион В обладает бóльшим сродством к иониту ; если К < 1, то ион А обладает бóльшим сродством к иониту; если же К ≈ 1, то оба иона одинаково сорбируются ионитом.

На протекание ионного обмена влияют следующие факторы :

1) природа ионита ;

2) природа иона : чем больше отношение заряда иона к радиусу гидратированного иона (z/r), тем больше сродство к иониту;

3) свойства раствора :

§ значение рН (см. в следующих разделах);

§ концентрация иона : из разбавленных растворов ионит сорбирует ионы с бóльшим зарядом, а из концентрированных – с меньшим;

§ ионная сила раствора : чем меньше μ, тем лучше сорбируются ионы.

Общая характеристика методов


Значение методов разделения и концентрирования, области применения. Достоинства и недостатки. Классификация методов по природе процессов, лежащих в их основе. Классификация методов по числу и природе фаз матрицы и концентрата. Виды концентрирования.
Место разделения и концентрирования в аналитическом цикле. Взаимосвязь методов концентрирования и определения и объекта анализа. Сочетание концентрирования с методами определения: комбинированные и гибридные методы. Комбинация методов концентрирования.
Количественные характеристики разделения и концентрирования. Коэффициент распределения и его выражение в разных методах. Степень извлечения, коэффициент концентрирования и коэффициент разделения.

Экстракция

Общая характеристика экстракции. Особенности экстракции как метода концентрирования. Этапы развития, современное состояние. Основные понятия и термины. Условия экстракции веществ.
Количественные характеристики экстракции: коэффициент распределения, степень извлечения, коэффициент разделения, константа распределения и константа экстракции. Скорость экстракции и факторы, на нее влияющие.
Классификация экстракционных систем. Классификация по типу экстракционной системы: " физическое" распределение и распределение, сопровождающееся химическими процессами (реакционная экстракция). Классификация, основанная на природе экстрагентов: кислотные, основные и нейтральные экстрагенты. Классификация по типу экстрагируемого соединения: неионизированные соединен ия и ио нные ассоциаты.
Способы осуществления экстракции: периодическая, полупротивоточная и противоточная экстракция, использование легкоплавких экстрагентов, твердых носителей экстрагентов и трехфазных систем, гомогенная экстракция. Автоматизация экстракционных процессов.

Экстракция в неорганическом анализе . Принцип жестких и мягких кислот и оснований Пирсона (ЖМКО) и его применение для прогнозирования экстракционного поведения металлов в различных экстракционных системах.
Координационно несольватированные нейтральные соединения. Основные факторы, влияющие на экстракцию. Растворимость и экстракция, роль растворителя.
Координационно сольватированные нейтральные (смешанные) комплексы. Условия образования и экстракции. Уравнения экстракции. Принципы выбора нейтрального экстрагента, основные типы экстрагентов.
Хелаты. Основные группы хелатообразующих экстрагентов. Особенности образования и экстракции нейтральных (координационно насыщенных и ненасыщенных) и заряженных (катионных и анионных) хелатов. Количественное описание экстракции. Константа экстракции. Роль устойчивости хелата, кислотных свойств реагента, констант распределения реагента и комплекса. Влияние природы растворителя на экстракцию. Синергетический эффект при экстракции координационно ненасыщенных хелатов. Проблема избирательности экстракции, выбор экстрагента с этих позиций.
Координационно несольватированные ионные ассоциаты. Химизм экстракции, ионные пары, константа ассоциации, влияние зарядов и радиусов ионов, роль растворителя, поведен ие ио нной пары в экстракте. Особенности образования и экстракции металлов с краун-эфирами и другими макроциклическими соединениями.
Минеральные и комплексные металлокислоты. Основные типы экстрагентов. Закономерности экстракции комплексных металлокислот. Роль воды, гидратно-сольватный механизм экстракции. Влияние концентрац ии ио нов водорода и неорганического аниона, заряда, размера и константы устойчивости комплексного аниона. Влияние концентрации металла. Диссоциация и ассоциация кислот в органической фазе в зависимости от свойств растворителя. Взаимное влияние металлов при экстракции: соэкстракция микроэлементов и подавление их экстракции. Особенности высокомолекулярных аминов как экстрагентов.

Экстракция органических соединений . Основные закономерности экстракции неэлектролитов (углеводородов, спиртов, альдегидов, эфиров) и электролитов (кислот, фенолов, оснований). Растворимость и экстракция. Роль растворителя и состава водной фазы. Высаливание и всаливание. Изменение экстракционных свойств в ряду гомологов. Взаимодействия типа гость-хозяин при экстракции органических соединений краун-эфирами. Сочетание экстракции с методами последующего определения органических соединений.

Практическое использование экстракции . Универсальность экстракции как метода разделения и концентрирования. Пути увеличения избирательности экстракции. Приемы, повышающие эффективность метода: обменная и субстехиометрическая экстракция, синергетические эффекты при использовании смесей экстрагентов. Сочетание экстракции с методами определения (фотометрическим, флуориметрическим, атомно-абсорбционным, атомно-флуоресцентным, вольтамперометрическим и другими). Экстракция отдельных элементов. Экстракция в анализе важнейших объектов.

Сорбция
Особенности сорбции как метода концентрирования. Сорбенты, общие требования к ним. Параметры сорбции: коэффициент распределения, емкость сорбента, изотермы сорбции.
Техника сорбционного концентрирования. Концентрирование в статических и динамических условиях. Способ сорбционного фильтра. Концентрирующие патроны. Автоматизация процесса сорбционного концентрирования.
Синтетическ ие иониты. Основные типы, химизм процессов, выбор систем. Повышение избирательности за счет маскирования и сорбции из водно-органических растворов.
Неорганические ионообменники: оксиды и гидроксиды металлов (силикагель, гидратированные оксиды титана, циркония и олова), соли металлов (фосфат циркония, сульфиды), соли гетерополикислот и другие. Достоинства и недостатки. Особенности практического использования.
Комплексообразующие сорбенты на полимерной основе, на основе целлюлозы, химически модифицированные кремнеземы. Полимерные гетероцепные сорбенты. Сорбенты, полученные нанесением комплексообразующих реагентов на твердую основу без химической прививки. Примеры использования комплексообразующих сорбентов для выделения и концентрирования неорганических и органических соединений.
Активные угли. Механизм действия, аналитические особенности, примеры использования.

Методы осаждения и соосаждения
Особенности концентрирования осаждением и соосаждением. Достоинства и недостатки. Избирательное отделение матрицы. Соосаждение микроэлементов с коллектором или на части матрицы. Механизмы соосаждения. Требования к коллектору и пути его выбора. Неорганические соосадители: гидроксиды, сульфиды, сульфаты, фосфаты. Органические соосадители. Примеры использования соосаждения для концентрирования неорганических и органических соединений.

Электрохимические методы
Классификация методов. Электрохимическое выделение на ртутном катоде, твердых, пастовых и химически модифицированных электродах. Выделение при постоянном токе и контролируемом потенциале. Электровыделение матрицы и микроэлементов. Цементация микроэлементов порошками металлов и амальгамами, требования к цементаторам. Другие электрохимические методы концентрирования при определении неорганических и органических соединений.

Испарение и родственные методы концентрирования
Принципы методов. Отгонка, ректификация, молекулярная дистилляция. Сублимация. Основные количественные характеристики, коэффициент разделения. Удаление матрицы и выделение микроэлементов.
Отгонка из раствора. Роль коллектора. Отгонка с предварительным химическим превращением – переводом матрицы или микрокомпонентов в летучие элементы, гидриды, галогениды, оксиды. Фракционное испарение. Газовая экстракция – отгонка отделяемых компонентов при помощи газа-носителя.

Другие методы концентрирования
Кристаллизационные методы. Объемная кристаллизация. Управляемая кристаллизация: направленная кристаллизация и зонная плавка. Принцип методов, техника осуществления, аналитические особенности. Значение кристаллизационных методов концентрирования в анализе чистых веществ.
Флотация. Техника осуществления. Флотация после осажден ия и ио нная флотация. Факторы, влияющие на флотационное концентрирование.
Селективное растворение . Растворители, обеспечивающие избирательность растворения. Примеры использования селективного растворения в фазовом анализе неорганических материалов и для концентрирования микроэлементов при анализе почв и растений.
Пробирная плавка. Существо метода и его значение при определении благородных металлов. Примеры использования.

Основная

  1. Н. М Кузьмин, Ю. А Золотов Концентрирование следов элементов. М.: Наука, 1988.
  2. А. Мицуике Методы концентрирования микроэлементов в неорганическом анализе. М.: Химия, 1986.
  3. Л. Р. Москвин, Л. Г. Царицына Методы разделения и концентрирования в аналитической химии. Л.: Химия, 1991.
  4. Ю. А. Золотов Экстракция в неорганическом анализе. М.: МГУ, 1988.
  5. Концентрирование следов органических соединений / Под ред. Н. М. Кузьмина. М.: Наука, 1990. (пробл. анал. хим.; Т. 10).
  6. И. М. Коренман Экстракция в анализе органических веществ. М.: Химия, 1977.

Дополнительная

  1. Основы жидкостной экстракции / Под ред. Г. А. Ягодина. М.: Химия, 1981.
  2. Ю. А. Золотов., Кузьмин Н. М. экстракционное концентрирование. М.: Химия, 1971.
  3. Ю. А. Золотов. Экстракция внутрикомплексных соединений. М.: Наука, 1968.
  4. Ю. А. Золотов и др. Экстракция галогенидных комплексов металлов. М.: Наука, 1973.
  5. В. С. Шмидт Экстракция аминами. М.: Атомиздат, 1980.
  6. Экстракционная хроматография / Под ред. Г. Брауна, Г. Герсини. М.: Мир, 1978.
  7. К. М. Салдадзе, Копылова-Валова В. Д. Комплексообразующие иониты. М.: Химия, 1980.
  8. Г. В. Мясоедова, С. Б. Саввин Хелатообразующие сорбенты. М.: Наука, 1984.
  9. Г. В. Лисичкин и др. Модифицированные кремнеземы в сорбции, катализе и хроматографии. М.: Химия, 1986.
  10. Методы анализа высокочистых веществ. /Под ред. Ю. А. Карпова. М.: Наука, 1987.
  11. Ю. Ю. Лурье Аналитическая химия промышленных сточных вод. М.: Химия, 1984.
  12. В. Н Майстренко, Н. А. Клюев. Эколого-аналитический мониторинг стойких органических загрязнителей. М.: Бином. Лаборатория знаний. 2004.

Прямые инструментальные методы часто не могут быть использованы при анализе многих сложных объектов либо вследствие негомогенного распределения компонентов в образце, либо в связи с трудностями градуировки, когда отсутствуют стандартные образцы известного состава. Это может быть справедливо в отношении целого ряда промышленных, геологических, биологических материалов, объектов окружающей среды, а также веществ высокой чистоты, содержащих некоторые компоненты на уровне мкг/л, нг/г, нг/л. В таких случаях прибегают к концентрированию и разделению микрокомпонентов, отделению основной массы макрокомпонентов либо элементов-примесей с последующим анализом полученного концентрата различными химическими и инструментальными методами.

В основе операций разделения и концентрирования лежат одни и те же процессы и методы, основанные на различии химических и физических свойств разделяемых компонентов - растворимости, сорбции, температур кипения и сублимации и, отличающиеся концентрациями разделяемых компонентов.

Разделение - это процесс или операция, в результате которого компоненты, составляющие исходную смесь, и концентрации которых могут быть соизмеримы, отделяются друг от друга.

Концентрирование - это процесс или операция, в результате которых повышается отношение концентраций или количества микрокомпонентов к концентрации или количеству макрокомпонентов.

Экстракция - метод разделения и концентрирования, основанный на распределения растворенного вещества между двумя несмешивающимися фазами (обычно на практике одной фазой является водный раствор, а второй - органический растворитель). Основные преимущества экстракционного метода:

1) возможность варьирования избирательности разделения

2) возможность работы с аналитами на различных уровнях концентраций;

3) легкость технологического и аппаратурного оформления;

4) возможность осуществления непрерывного процесса, автоматизации;

5) высокая производительность.

Экстракционные методы выделения веществ нашли широкое применение при анализе компонентов некоторых промышленных и природных объектов. Экстракция выполняется достаточно быстро, при этом достигается высокая эффективность разделения и концентрирования, легко совместима с разнообразными методами анализа. Многие аналитически методы экстракции стали прообразами важных технологических экстракционных процессов, особенно в атомной энергетике.

Основные термины метода экстракции:

экстрагент - органический растворитель, содержащий или не содержащий другие компоненты и экстрагирующий вещество из водной фазы;

экстракционный компонент - реагент, образующий с извлекаемым компонентом комплекс или соль, которые способны экстрагироваться;

разбавитель - инертный (органический) растворитель, используемый для улучшения физических (плотность, вязкость и др.) или экстракционных (например, избирательность) свойств экстрагента. Под инертностью понимается неспособность образовывать соединения с извлекаемым веществом.

экстракт - отделенная органическая фаза, содержащая экстрагированное из водной фазы вещество;

реэкстракция - процесс обратного извлечения вещества из экстракта в водную фазу;

реэкстрагент - раствор (обычно водный или только вода) используемый для извлечения вещества из экстракта;

реэкстракт - отделенная фаза (обычно водная), содержащая вещество, извлеченное из экстракта в результате реэкстракции;

высаливание - улучшение экстракции вещества путем добавления электролита (высаливателя), который способствует образованию экстрагируемого соединения в водной фазе.

Типы экстракционных систем

При осуществлении жидкость-жидкостной экстракции можно выделить несколько типов экстракционных систем.

Экстракционные системы I типа. В этих экстракционных системах в качестве органической фазы используются органические растворители или их смеси, а в качестве водной фазы либо вода, либо водные растворы солей. Большое распространение таких экстракционных систем объясняется дешевизной воды как растворителя, ее ограниченной смешиваемостью со многими органическими растворителями, а также тем, что в подавляющем большинстве случаев объект, который необходимо экстрагировать, либо изначально находится в водном растворе, либо переводится в водорастворимое состояние в процессе пробоподготовки объекта.

В ряде случаев, экстракционные системы I типа непригодны для работы, в этом случае используют экстракционные системы II типа.

Экстракционные системы II типа. В этих экстракционных системах в качестве неполярной фазы используется алифатический углеводород, второй же фазой служит либо полярный органический растворитель, либо его водный раствор, либо раствор галогенида цинка в полярном органическом растворителе. Как правило, в качестве алифатического углеводорода чаще всего используют легкокипящие углеводороды, в частности гексан, гептан, октан, циклогексан или петролейный эфир.

Важным критерием выбора растворителей экстракционной системы является ограниченная смешиваемость экстракционных фаз.

Способы осуществления экстракции

В зависимости от решаемой задачи применяют простую экстракцию, периодическую экстракцию или противоточную экстракцию. Периодическая экстракция представляет собой экстракцию вещества из одной фазы отдельными порциями свежего экстрагента. При остаточно высоких значениях коэффициента распределения однократная экстракция позволит количественно извлечь вещество в органическую фазу. Эффективность однократной экстракции можно характеризовать степенью извлечения -R, %, рассчитываемой по формуле: $R=орг*100%/общ$ где орг. - количество вещества А в органической фазе; общ - общее количества вещества А в обеих фазах.

Если однократная экстракция не обеспечивает достаточной степени извлечения, то R можно повысить за счет увеличения объема органической фазы или прибегая к многократной экстракции.

Периодическую экстракцию преимущественно проводят в делительной воронке, в которую вводят водный раствор, содержащий экстрагируемое соединение, и органический растворитель, не смешивающийся с водной фазой. Затем воронку энергично встряхивают для обеспечивания контакта фаз. После встряхивания фазы разделяют.

Серьезным недостатком многократной экстракции является значительное разбавление извлекаемого компонента, особенно если число стадий велико. Расход экстрагента можно уменьшить, если исчерпывающую экстракцию проводить в аппаратах для непрерывной экстракции. Непрерывная экстракци осуществляется при непрерывном и относительном перемещении двух фаз; одна из фаз, обычно водная, остаѐтся неподвижной.

Непрерывная экстракция особенно удобна, когда коэффициент распределения очень мал и для количественного извлечения было бы необходимо провести очень большое число последовательных экстракций. Общий принцип непрерывной экстракции заключается в дистилляции экстрагента из перегонной колбы, конденсировании и пропускании его через раствор, подвергаемый экстракции. Экстрагент отделяется и стекает обратно в приемную колбу, откуда он снова отгоняется и заново проходит цикл, в то время как экстрагируемое вещество остается в приемной колбе. В том случае, если растворитель нельзя легко перегнать, порции свежего растворителя могут непрерывно добавляться из резервуара, но при этом расход экстрагента будет значительным.

Противоточную экстракцию проводят в аппарате Крейга, который состоит из ряда ячеек специальной конструкции, устроенных таким образом, что одна фаза (например, органическая) последовательно переходит из одной ячейки в другую после каждого равновесного распределения.

Схематическое изображение прибора для противоточной экстракции

Перед началом экстракции все ячейки частично заполняют тяжелым растворителем, который является неподвижной фазой. В ячейку 0 помещают разделяемую смесь в том же растворителе. Затем в ячейку 0 вводят более легкий несмешивающийся с первым растворитель (подвижная фаза). Фазы перемешивают и оставляют расслаиваться. После расслоения фаз верхний слой из ячейки 0 переносят в ячейку 1, а в ячейку 0 вводят новую порцию свежего растворителя и проводят одновременную экстракцию в обеих ячейках. Далее верхние слои из ячеек 0 и 1 переносят в ячейки 1 и 2 соответственно, в ячейку 0 снова вводят новую порцию подвижной фазы и процесс экстракции повторяют. Введение в систему свежего растворителя позволяет осуществить любое число экстракций.

Противоточная экстракция обладает большой эффективностью разделения. С ее помощью удается разделить вещества с близкими химическими свойствами. Например, этот метод применяли для разделения редкоземельных элементов. Противоточное разделение широко применяют для фракционирования органических соединений. Существенным недостатком противоточной экстракции является сильное разбавление компонентов при разделении.