Внецентренное сжатие лаб работы. Внецентренное растяжение – сжатие

Пример.

Для заданной схемы нагружения стержня (рис.52) построить эпюры поперечной силы Q y (z) и изгибающего момента M x (z) при следующих исходных данных: L = 5 кНм, P = 10 кН, q = 20 кН/м, l = 1 м.

Запишем уравнения поперечных сил и изгибающего момента:

Q y (z) = Q y (0) │ 1 – P - q×(z - l) │ 2

M x (z) = M x (0) + Q y (0)×z│ 1 - P×(z - l) - q×(z - l) 2 /2│ 2

В соответствии с условиями закрепления стержня запишем граничные условия в следующем виде: M x (0) = - L,

Для нахождения неизвестной реакции Q y (0) необходимо приравнять уравнение изгибающего момента к нулю при координате z = 3l:

M x (3l) = M x (0) + Q y (0)×3l - P×(3l - l) - q×(3l - l) 2 /2 = 0.

Решая это уравнение относительно Q y (0), получим Q y (0) = 21.67кН.

Теперь, учитывая найденные константы, уравнения интегральных характеристик можно переписать в следующем виде:

Q y (z) = 21.67│ 1 – P – q×(z - l) │ 2

M x (z) = -L + 21.67z│ 1 – P×(z - l) – q×(z - l) 2 /2│ 2

Построение графиков будем производить аналогично примеру 1.

1 участок 0 ≤ z ≤ l:

Q y (0) = 21.67 кН,

Q y (l) = 21.67 кН,

M x (0) = -5 кНм,

M x (l) = -5 + 21.67*1 = 16.67 кНм.

2 участок l ≤ z ≤ 3l:

Q y (l) = 21.67 – 10 = 11.67 кН,

Q y (3l) = 21.67 – 10 – 20*(3 - 1) = -28.33 кН,

M x (l) = -5 + 21.67*1 – 10(1 – 1) – 20(1 – 1) = 16.67 кНм,

M x (3l) = -5 + 21.67*3 – 10(3 – 1) – 20(3 – 1) =0 кНм.

Определим координаты экстремума и значения функции изгибающего момента в экстремальной точке:

Q y (z1) = 21.67 – P – q (z1 - l) = 0 → z1 = 1.58 м.

M x (1.58) = -L + 21.67·1.58 – P (1.58 - l) – q (1.58 - l) 2 /2 = 20.07 кНм.

По рассчитанным значениям строятся графики поперечной силы и изгибающего момента (рис. 52).

При внецентренном растяжении равнодействующая внешних сил не совпадает с осью стержня, как при обычном растяжении, а смещена относительно оси z и остается ей параллельной (рис.53).


Пусть точка А приложения равнодействующей внешних сил имеет в сечении координаты (х 0 , у 0). Тогда относительно главных осей равнодействующая сила Р дает моменты:

М х = Р×у 0 ,

М у = - Р×х 0 .

Таким образом, внецентренное растяжение-сжатие оказывается родственным косому изгибу. В отличие от последнего, однако, при внецентренном растяжении в поперечном сечении стержня возникают не только изгибающие моменты, но и нормальная сила:



В произвольной точке В с координатами (х, у) нормальное напряжение определяется следующим выражением:

Пространственная эпюра напряжений образует плоскость. Уравнение нейтральной линии получаем, приравнивая напряжения нулю:

При внецентренном растяжении-сжатии в отличие от косого изгиба нейтральная линия не проходит через центр тяжести сечения. При положительных х 0 и у 0 по крайней мере одна из величин х или у, входящих в уравнение (100), должна быть отрицательной. Следовательно, если точка приложения силы Р находится в первом квадранте, то нейтральная линия проходит с противоположенной стороны центра тяжести через квадранты 2,3 и 4 (рис.54).


Расстояние от начала координат до некоторой прямой

как известно из курса аналитической геометрии, равно

Следовательно, по мере того как точка приложения силы приближается к центру тяжести сечения, нейтральная линия удаляется от него.

В пределе при х 0 =у 0 =0, когда сила Р приложена в центре тяжести, нейтральная линия находится в бесконечности. Напряжения в этом случае распределены по сечению равномерно.

Из сказанного следует, что при внецентренном растяжении и сжатии нейтральная линия может как пересекать сечение, так и находится за его пределами. В первом случае в сечении возникают и растягивающие и сжимающие напряжения. Во втором случае напряжения во всех точках сечения будут одного знака.

В окрестностях центра тяжести существует область, называемая ядром сечения . Если след силы Р находится внутри ядра сечения, напряжения во всех точках сечения будут одного знака. Если сила приложена за пределами ядра сечения, нейтральная линия пересекает сечение, и напряжения в сечении будут как сжимающими, так и растягивающими. Когда точка приложения силы находится на границе ядра, нейтральная линия касается контура сечения. Чтобы определить ядро сечения, надо представить себе, что нейтральная линия обкатывается вокруг сечения. Точка приложения силы вычертит при этом контуры ядра.

Основные понятия и определения…………………………………………………

Физическая и математическая модель…………………………………………….

Геометрические характеристики сечения…………………………………………

Изменение геометрических характеристик при параллельном переносе координатных осей………………………………………………………………….

Изменение геометрических характеристик при повороте координатных осей…

Геометрические характеристики сложных сечений………………………………

Метод сечений. Внутренние силы…………………………………………………

Напряжение. Напряженное состояние в точке тела………………………………

Интегральные характеристики напряжений в точке……………………………..

Нормальные напряжения в плоскости поперечного сечения……………………

Закон парности касательных напряжений………………………………………...

Напряжения на наклонных площадках……………………………………………

Главные площадки и главные напряжения……………………………………….

Экстремальные свойства главных напряжений. Круговая диаграмма Мора…..

Испытания материалов на растяжение. Диаграмма растяжения………………..

Математическая модель механики твердо деформируемого тела………………

Деформированное состояние тела…………………………………………………

Касательные напряжения при кручении………………………………………….

Касательные напряжения при изгибе. Формула Журавского……………………

Теории (гипотезы) прочности………………………………………………………

Растяжение (сжатие) стержней……………………………………………………..

Кручение стержней………………………………………………………………….

Изгиб стержней………………………………………………………………………

Внецентренное растяжение и сжатие………………………………………………

ЛИТЕРАТУРА

1. Феодосьев В.И. Сопротивление материалов: Учеб. для вузов. – М.: Наука., 1998. – 512 с.

2. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: Учеб. для вузов. – М.: Высш.шк., 1995. – 560 с.

3. Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. – Киев.: Наукова думка, 1988. – 736 с.

4. Расчет прямых стержней на прочность. Метод.указания. С.А.Девятов, З.Н.Соколовский, Е.П.Степанова.2001.76с.

Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид деформации получается при действии на стержень двух равных и прямопротивоположных сил Р , направленных по прямой АА , параллельной оси стержня (Рис.3 а). Расстояние точки А от центра тяжести сечения ОА=е называется эксцентриситетом .

Рассмотрим сначала случай внецентренного сжатия, как имеющий большее практическое значение.

Нашей задачей явится нахождение наибольших напряжений, материале стержня и проверка прочности. Для решения этой задачи приложим в точках О по две равные и противоположные силы Р (Рис.3 б). Это не нарушит равновесия стержня в целом и не изменит напряжений в его сечениях.

Силы Р , зачеркнутые один раз, вызовут осевое сжатие, а пары сил Р , зачеркнутые дважды, вызовут чистый изгиб моментами . Расчетная схема стержня показана на Рис.3 в. Так как плоскость действия изгибающих пар ОА может не совпадать ни с одной из главных плоскостей инерции стержня, то в общем случае имеет место комбинация продольного сжатия и чистого косого изгиба.

Так как при осевом сжатии и чистом изгибе напряжения во всех сечениях одинаковы, то проверку прочности можно произвести для любого сечения, хотя бы С—С (Рис.3 б, в).

Отбросим верхнюю часть стержня и оставим нижнюю (Рис.3 г). Пусть оси Оу и Oz будут главными осями инерции сечения.

Рис.3. а) расчетная схема б) преобразование нагрузок в)приведенная расчетная схема г) механизм исследования напряжений

Координаты точки А , — точки пересечения линии действия сил Р с плоскостью сечения, — пусть будут и . Условимся выбирать положительные направления осей Оу и Oz таким образом, чтобы точка А оказалась в первом квадранте. Тогда и будут положительны.

Для того чтобы отыскать наиболее опасную точку в выбранном сечении, найдем нормальное напряжение в любой точке В с координатами z и у . Напряжения в сечении С — С будут складываться из напряжений осевого сжатия силой Р и напряжений от чистого косого изгиба парами с моментом Ре , где . Сжимающие напряжения от осевых сил Р в любой точке равны , где — площадь поперечного сечения стержня; что касается косого изгиба, то заменим его действием изгибающих моментов в главных плоскостях. Изгиб в плоскости х Оу вокруг нейтральной оси Oz будет вызываться моментом и даст в точке В нормальное сжимающее напряжение

Точно так же нормальное напряжение в точке В от изгиба в главной плоскости х Oz , вызванное моментом , будет сжимающим и выразится формулой.

Суммируя напряжения от осевого сжатия и двух плоских изгибов и считая сжимающие напряжения отрицательными, получаем такую формулу для напряжения в точке В :


(1)

Эта формула годится для вычисления напряжений в любой точке любого сечения стержня, стоит только вместо у и z подставить координаты точки относительно главных осей с их знаками.

В случае внецентренного растяжения знаки всех составляющих нормального напряжения в точке В изменятся на обратные. Поэтому для того, чтобы получать правильный знак напряжений как при внецентренном сжатии, так и при внецентренном растяжении, нужно, кроме знаков координат у и z , учитывать также и знак силы Р ; при растяжении перед выражением

должен стоять знак плюс, при сжатии — минус.

Полученной формуле можно придать несколько иной вид; вынесем за скобку множитель ; получим:

(2)

Здесь и — радиусы инерции сечения относительно главных осей (вспомним, что и ).

Для отыскания точек с наибольшими напряжениями следует так выбирать у и z , чтобы достигло наибольшей величины. Переменными в формулах (1) и (2) являются два последних слагаемых, отражающих влияние изгиба. А так как при изгибе наибольшие напряжения получаются в точках, наиболее удаленных от нейтральной оси, то здесь, как и при косом изгибе, надо отыскать положение нейтральной оси.

Обозначим координаты точек этой линии через и ; так как в точках нейтральной оси нормальные напряжения равны нулю, то после подстановки в формулу (2) значений и получаем:

(3)

Это и будет уравнение нейтральной оси. Очевидно, мы получили уравнение прямой, не проходящей через центр тяжести сечения.

Чтобы построить эту прямую, проще всего вычислить отрезки, отсекаемые ею на осях координат. Обозначим эти отрезки и . Чтобы найти отрезок , отсекаемый на оси Оу , надо в уравнении (3) положить

тогда мы получаем:

Если величины и положительны, то отрезки и будут отрицательны, т. е. нейтральная ось будет расположена по другую сторону центра тяжести сечения, чем точка А (Рис.3 г).

Нейтральная ось делит сечение на две части — сжатую и растянутую; на Рис.3 г растянутая часть сечения заштрихована. Проводя к контуру сечения касательные, параллельные нейтральной оси, получаем две точки и , в которых будут наибольшие сжимающие и растягивающие напряжения.

Измеряя координаты у и z этих точек и подставляя их значения в формулу (1), вычисляем величины наибольших напряжений в точках и :

Если материал стержня одинаково сопротивляется растяжению и сжатию, то условие прочности получает такой вид:

Для поперечных сечений с выступающими углами, у которых обе главные оси инерции являются осями симметрии (прямоугольник, двутавр и др.) и Поэтому формула упрощается, и мы имеем

Если же материал стержня неодинаково сопротивляется растяжению и сжатию, то необходимо проверить прочность стержня как в растянутой, так и в сжатой зонах.

Однако может случиться, что и для таких материалов будет достаточно одной проверки прочности. Из формул (4) и (5) видно, что положение точки А приложения силы и положение нейтральной оси связаны: чем ближе подходит точка А к центру сечения, тем меньше величины и и тем больше отрезки и . Таким образом, с приближением точки А к центру тяжести сечения нейтральная ось удаляется от него, и наоборот. Поэтому при некоторых положениях точки А нейтральная ось будет проходить вне сечения и все сечение будет работать на напряжения одного знака. Очевидно в этом случае всегда достаточно проверить прочность материала в точке .

Разберем практически важный случай, когда к стержню прямоугольного сечения (Рис. 4) приложена внецентренно сила Р в точке А , лежащей на главной оси сечения Оу . Эксцентриситет ОА равен е , размеры сечения b и d . Применяя полученные выше формулы, имеем:

Рис.4. Расчетная схема бруса прямоугольного сечения.

Напряжение в любой точке В равно

Напряжения во всех точках линии, параллельной оси Oz , одинаковы. Положение нейтральной оси определяется отрезками

Нейтральная ось параллельна оси Oz ; точки с наибольшими растягивающими и сжимающими напряжениями расположены на сторонах 1—1 и 3—3.

Значения и получатся, если подставить вместо у его значения . Тогда

Лекция № 28. Ядро сечения при внецентренном сжатии

При конструировании стержней из материалов, плохо сопротивляющихся растяжению (бетон), весьма желательно добиться того, чтобы все сечение работало лишь на сжатие. Этого можно достигнуть, не давая точке приложения силы Р слишком далеко отходить от центра тяжести сечения, ограничивая величину эксцентриситета.

Конструктору желательно заранее знать, какой эксцентриситет при выбранном типе сечения можно допустить, не рискуя вызвать в сечениях стержня напряжений разных знаков. Здесь вводится понятие о так называемом ядре сечения . Этим термином обозначается некоторая область вокруг центра тяжести сечения, внутри которой можно располагать точку приложения силы Р, не вызывая в сечении напряжений разного знака.

Пока точка А располагается внутри ядра, нейтральная ось не пересекает контура сечения, все оно лежит по одну сторону от нейтральной оси и, стало быть, работает лишь на сжатие. При удалении точки А от центра тяжести сечения нейтральная ось будет приближаться к контуру; граница ядра определится тем, что при расположении точки А на этой границе нейтральная ось подойдет вплотную к сечению, коснется его.

Рис.1. Комбинации положения сжимающей силы и нейтральной линии

Таким образом, если мы будем перемещать точку А так, чтобы нейтральная ось катилась по контуру сечения, не пересекая его, то точка А обойдет по границе ядра сечения. Если контур сечения имеет «впадины», то нейтральная ось будет катиться по огибающей контура.

Чтобы получить очертание ядра, необходимо дать нейтральной оси несколько положений, касательных к контуру сечения, определить для этих положений отрезки и и вычислить координаты и точки приложения силы по формулам, вытекающим из известных зависимостей:

это и будут координаты точек контура ядра и .

При многоугольной форме контура сечения (Рис.2), совмещая последовательно нейтральную ось с каждой из сторон многоугольника, мы по отрезкам и определим координаты и точек границы ядра, соответствующих этим сторонам.

При переходе от одной стороны контура сечения к другой нейтральная ось будет вращаться вокруг вершины, разделяющей эти стороны; точка приложения силы будет перемещаться по границе ядра между полученными уже точками. Установим, как должна перемещаться сила Р , чтобы нейтральная ось проходила все время через одну и ту же точку В (,) — вращалась бы около нее. Подставляя координаты этой точки нейтральной оси в известное уравнение нейтральной оси (линии), получим:

Рис.2. Ядро сечения для многоугольной формы поперечного сечения

Таким образом координаты и точки приложения силы Р связаны линейно. При вращении нейтральной оси около постоянной точки В точка А приложения силы движется по прямой. Обратно, перемещение силы Р по прямой связано с вращением нейтральной оси около постоянной точки.

На Рис.3 изображены три положения точки приложения силы на этой прямой и соответственно три положения нейтральной оси. Таким образом, при многоугольной форме контура сечения очертание ядра между точками, соответствующими сторонам многоугольника, будет состоять из отрезков прямых линий.

Рис.3. Динамика построения ядра сечения

Если контур сечения целиком или частично ограничен кривыми линиями, то построение границы ядра можно вести по точкам. Рассмотрим несколько простых примеров построения ядра сечения.

При выполнении этого построения для прямоугольного поперечного сечения воспользуемся полученными формулами.

Для определения границ ядра сечения при движении точки А по оси Оу найдем то значение , при котором нейтральная ось займет положение Н 1 О 1

Рис.4. построение ядра для прямоугольного сечения.

Для этого сила должна двигаться по прямой 1 — 2. Точно так же можно доказать, что остальными границами ядра будут линии 2—3, 3—4 и 4—1.

Таким образом, для прямоугольного сечения ядро будет ромбом с диагоналями, равными одной трети соответствующей стороны сечения. Поэтому прямоугольное сечение при расположении силы по главной оси работает на напряжения одного знака, если точка приложения силы не выходит за пределы средней трети стороны сечения.

Рис.5. Динамика изменения напряжений при изменении эксцентриситета.

Эпюры распределения нормальных напряжений по прямоугольному сечению при эксцентриситете, равном нулю, меньшем, равном и большем одной шестой ширины сечения, изображены на Рис.5.

Отметим, что при всех положениях силы Р напряжение в центре тяжести сечения (точка О ABCD, описанного около двутавра (Рис.6а). Следовательно, очертание ядра для двутавра имеет форму ромба, как и для прямоугольника, но с другими размерами.

Для швеллера, как и для двутавра, точки 1, 2, 3, 4 контура ядра (Рис.6 б) соответствуют совпадению нейтральной оси со сторонами прямоугольника ABCD .

Лекция № 29. Совместные действия изгиба и кручения призматического стержня

Исследуем этот вид деформации стержня на примере расчета вала кругового (кольцевого) поперечного сечения на совместное действие изгиба и кручения (рис. 1).

Рис.1. Расчетная схема изогнутого и скрученного вала

Внецентренное сжатие. Построение ядра сечения. Изгиб с кручением. Расчеты на прочность при сложном напряженном состоянии.

Внецентренное сжатие – это вид деформации, при котором продольная сила в поперечном сечении стержня приложена не в центре тяжести. При внецентренном сжатии , помимо продольной силы (N), возникают два изгибающих момента ( и ).

Считают, что стержень обладает большой жесткостью на изгиб, чтобы пренебречь прогибом стержня при внецентренном сжатии.

Преобразуем формулу моментов при внецентренном сжатии , подставляя значения изгибающих моментов: .

Обозначим координаты некоторой точки нулевой линии при внецентренном сжатии , и подставим их в формулу нормальных напряжений при внецентренном сжатии. Учитывая, что напряжения в точках нулевой линии равны нулю, после сокращения на , получим уравнение нулевой линии при внецентренном сжатии: .

Нулевая линия при внецентренном сжатии и точка приложения нагрузки всегда расположены по разные стороны от центра тяжести сечения.

Отрезки, отсекаемые нулевой линией от осей координат, обозначенные и , легко найти из уравнения нулевой линии при внецентренном сжатии. Если сначала принять , а затем принять , то найдем точки пересечения нулевой линии при внецентренном сжатии с главными центральными осями:

Нулевая линия при внецентренном сжатии разделит поперечное сечение на две части. В одной части напряжения будут сжимающими, в другой – растягивающими. Расчет на прочность, как и в случае косого изгиба, проводят по нормальным напряжениям, возникающим в опасной точке поперечного сечения (наиболее удаленной от нулевой линии).

Ядро сечения - малая область вокруг центра тяжести поперечного сечения, характерная тем, что любая сжимающая продольная сила, приложенная внутри ядра, вызывает во всех точках поперечного сечения сжимающие напряжения.

Примеры ядра сечения для прямоугольного и круглого поперечных сечений стержня.

Изгиб с кручением. Такому нагружению (одновременному действию крутящих и изгибающих моментов) часто подвержены валы машин и механизмов. Для расчета бруса необходимо прежде всего установить опасные сечения. Для этого строятся эпюры изгибающих и крутящих моментов.

Используя принцип независимости действия сил, определим напряжения, возникающие в брусе отдельно для кручения, и для изгиба.

При кручении в поперечных сечениях бруса возникают касательные напряжения, достигающие наибольшего значения в точках контура сечения При изгибе в поперечных сечениях бруса возникают нормальные напряжения, достигающие наибольшего значения в крайних волокнах бруса .

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

КАФЕДРА «ОБЩЕТЕХНИЧЕСКИЕ ДИСЦИПЛИНЫ»

НАПРЯЖЕНИЙ ПРИ ВНЕЦЕНТРЕННОМ

РАСТЯЖЕНИИ ИЛИ СЖАТИИ

Методические указания

РПК «Политехник»

Волгоград

2007

УДК 539. 3/.6 (07)

Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии: Методические указания / Сост. , ; Волгоград. гос. техн. ун-т. – Волгоград, 2007. – 11 с.

Подготовлены в соответствии с рабочей программой по дисциплине «Сопротивление материалов» и предназначены в помощь студентам, обучающимся по направлениям: 140200.

Ил. 5. Табл. 2. Библиогр.: 4 назв.

Рецензент: к. т. н., доцент

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

Составители: Александр Владимирович Белов, Наталья Георгиевна Неумоина

Анатолий Александрович Поливанов

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ

НАПРЯЖЕНИЙ ПРИ ВНЕЦЕНТРЕННОМ

РАСТЯЖЕНИИ ИЛИ СЖАТИИ

Методические указания

Темплан 2007 г., поз. № 18.


Подписано в печать г. Формат 60×84 1/16.

Бумага листовая. Печать офсетная.

Усл. печ. л. 0,69. Усл. авт. л. 0,56.

Тираж 100 экз. Заказ №

Волгоградский государственный технический университет

400131 Волгоград, просп. им. , 28.

РПК «Политехник»

Волгоградского государственного технического университета

400131 Волгоград, ул. Советская, 35.

© Волгоградский

государственный

технический

Университет 2007

ЛАБОРАТОРНАЯ РАБОТА № 10

Тема: Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии.

Цель работы : Определить опытным путем величину нормальных напряжений в заданных точках поперечного сечения.

Время проведения : 2 часа.

1. Краткие теоретические сведения



Внецентренное растяжении (сжатие) прямого бруса имеет место в том случае, если внешняя сила, приложенная к брусу направлена параллельно его продольной оси, но действует на некотором расстоянии от центра тяжести поперечного сечения бруса (рис. 1).

Внецентренное сжатие – сложная деформация. Её можно представить как совокупность 3-х простых деформаций (общий случай – см. рис. 1) или 2-х простых деформаций (частный случай – см. рис.2).

Общий случай

Внецентренное сжатие

центральное

чистый изгиб

относительно оси х

у

Частный случай

Внецентренное сжатие

центральное сжатие

чистый изгиб относительно оси у

Все поперечные сечения бруса, испытывающего внецентренное сжатие являются равноопасными.

Там возникают одновременно три внутренних силовых фактора (общий случай):

· продольная сила N ;

· изгибающий момент М x ;

· изгибающий момент М y ,

и два внутренних силовых фактора (частный случай):

· продольная сила N ;

· изгибающий момент Мх и М y .

Этим внутренним силовым фактором соответствуют только нормальные напряжения, величину которых можно определить по формулам:

где А – площадь поперечного сечения бруса (м2 );

Ix ; Iy – главные центральные моменты инерции (м4 ).

Для прямоугольного сечения:

у х ;

х – расстояние от точки, в которой определяется напряжение, до оси у .

Согласно принципу независимости действия сил, напряжение в любой точке поперечного сечения при внецентренном сжатии определяется по формулам:

, (3)

. (4)

А при внецентренном растяжении:

. (5)

Знак перед каждым слагаемым выбирается в зависимости от вида сопротивления: растяжению соответствует знак «+», сжатию «-».

Для определения напряжения в угловой точке сечения используется формула:

, (6)

где Wx , Wy – моменты сопротивления поперечного сечения относительно главных центральных осей инерции поперечного сечения (м3 ).

Для прокатных профилей: двутавра, швеллера и т. п. моменты сопротивления приводятся в таблицах.

DIV_ADBLOCK127">


Аналогично определится знак у напряжения σМу . В этом случае сечение закрепляется по оси у (см. рис. 3 в).

2. Краткие сведения об оборудовании и образце

Схема испытания

На машине УММ-50 .

На машине Р-10.

Испытание на внецентренное растяжение производят на машине УММ-50 . Образец – стальная полоса прямоугольного поперечного сечения размерами в ´ h = 1,5 ´ 15 см . Испытание на внецентренное сжатие производят на разрывной машине Р-10 . Образец – короткая двутавровая стойка. Номер профиля 12 .

Описание используемых в данной работе машин подробно приводится в руководстве для выполнения лабораторной работы № 1.

В качестве измерительной аппаратуры здесь используются тензометрические датчики и прибор ИДЦ-I, принцип действия которых подробно изложен в руководстве для выполнения лабораторной работы № 3.

3. Выполнение лабораторной работы

3.1. Подготовка к эксперименту

1. Записать в отчет цель работы, сведения об оборудовании и материале испытываемых образцов.

2. Вычертите схему испытания, занести в отчет требуемые размеры образца.

3. Определить требуемые геометрические характеристики:

· для прямоугольника по формулам (2);

· для двутавра из таблицы сортамента.

Определить расстояния от заданных точек до оси х . Определить максимальное и минимальное значение силы F, а также значение ступени нагружения ΔF. Занести нагрузку в первую графу табл. 1.

(Примечание : максимальное значение силы F определяется по паспорту установки с учетом коэффициента концентрации напряжений исходя из условия, что расчетное значение напряжения не должно превышать предела текучести материала образца.)

Вычислить значение внутренних силовых факторов:

N = F ; Mx = F × y .

В зависимости от схемы испытания вычислить нормальное напряжение в указанных точках поперечного сечения по формулам (5) или (6). Значение напряжений записать в графу 3 табл. 2.

3.2. Экспериментальная часть

1. Произвести испытание, зафиксировав при заданных значениях нагрузки показание всех трех тензодатчиков по прибору ИДЦ-I.

2. Число измерений по каждому тензодатчику должно составлять не менее пяти. Данные записать в табл. 1.

3.3. Обработка опытных данных

1. Определить приращение показаний каждого тензодатчика

2. Определить среднее значение приращений:

https://pandia.ru/text/78/445/images/image021_18.gif" width="121" height="40 src=">.

7. Сделать выводы по работе.

Лабораторная работа №10

Тема:

Цель работы:

Теоретическое определение напряжений

Опытное определение напряжений

Таблица 1

Нагруз-

ка, F , кН

Показания прибора и их приращения

Сравнение теоретических и опытных результатов

Таблица 2

Нормальные напряжения МПа

% расхождения

опытные значения

теоретические значения

σ I

σ II

σ III

Эпюры напряжений с нанесением нулевой линии

Выводы
Работу выполнил студент:

Контрольные вопросы

1. Как получить деформацию внецентренное сжатие (растяжение)?

2. Из каких простых деформаций состоит сложная деформация внецентренное сжатие (растяжение)?

3. Какие внутренние силовые факторы возникают в поперечном сечении внецентренно сжатого бруса?

4. Как определяется их величина?

5. Какое сечение внецентренного сжатого бруса является опасным?

6. Как определить величину напряжений от каждого из внутренних силовых факторов в любой точке поперечного сечения?

7. По каким формулам определяются моменты инерций прямоугольного сечения относительно главных центральных осей инерции? Каковы единицы их измерения?

8. Как определить знак у напряжения от внутренних силовых факторов при внецентренном растяжении (сжатии)?

9. Какая гипотеза положена в основу определения напряжений при внецентренном сжатии? Сформулируйте её.

10. Формула для определения напряжений в любой точке поперечного сечения при внецентренном сжатии.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Феодосьев материалов. М.:Изд-во МГТУ, 2000 – 592c.

2. и др. Сопротивление материалов. Киев: Высшая школа, 1986. – 775с.

3. Степин материалов. М.: Высшая школа, 1988. – 367с.

4. Сопротивление материалов. Лабораторный практикум./, и др. М.: Дрофа, 2004. – 352с.